-
Notifications
You must be signed in to change notification settings - Fork 1
/
lines_functions.py
440 lines (343 loc) · 17.8 KB
/
lines_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import collections
import glob
import cv2
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
from calibration_functions import calibrateCamera_SLOW, undistort
from globals import xm_per_pix, ym_per_pix
from perspective_function import birdview
from threshold_functions import binarize_image
# Define a class to receive the characteristics of each line detection
class Line():
def __init__(self, buffer_length=10):
# was the line detected in the last iteration?
self.detected = False
# x values of the last n fits of the line
self.recent_xfitted = []
# polynomial coefficients for the most recent fit
self.last_fit_pixel = None
self.last_fit_meter = None
# list of polynomial coefficients of the last N iterations
self.recent_fits_pixel = collections.deque(maxlen=2 * buffer_length)
self.recent_fits_meter = collections.deque(maxlen=2 * buffer_length)
# distance in meters of vehicle center from the line
self.line_base_pos = None
# difference in fit coefficients between last and new fits
self.diffs = np.array([0, 0, 0], dtype='float')
# x values for detected line pixels
self.allx = None
# y values for detected line pixels
self.ally = None
def draw(self, mask, color=(0, 255, 0), line_width=50, average=False):
"""
Draw the line on a color mask image.
"""
h, w, c = mask.shape
plot_y = np.linspace(0, h - 1, h)
coeffs = self.average_fit if average else self.last_fit_pixel
line_center = coeffs[0] * plot_y ** 2 + coeffs[1] * plot_y + coeffs[2]
line_left_side = line_center - line_width // 2
line_right_side = line_center + line_width // 2
# recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array(list(zip(line_left_side, plot_y)))
pts_right = np.array(np.flipud(list(zip(line_right_side, plot_y))))
pts = np.hstack([pts_left, pts_right])
# Draw the lane onto the warped blank image
return cv2.fillPoly(mask, [np.int32(pts)], color)
def update_line(self, new_fit_pixel, new_fit_meter, detected, clear_buffer=False):
"""
Update Line with new fitted coefficients.
:param new_fit_pixel: new polynomial coefficients (pixel)
:param new_fit_meter: new polynomial coefficients (meter)
:param detected: if the Line was detected or inferred
:param clear_buffer: if True, reset state
:return: None
"""
self.detected = detected
if clear_buffer:
self.recent_fits_pixel = []
self.recent_fits_meter = []
self.last_fit_pixel = new_fit_pixel
self.last_fit_meter = new_fit_meter
self.recent_fits_pixel.append(self.last_fit_pixel)
self.recent_fits_meter.append(self.last_fit_meter)
# PROPERTIES
@property
# polynomial coefficients averaged over the last n iterations
def best_fit_pixels(self):
return np.mean(self.recent_fits_pixel, axis=0)
@property
# polynomial coefficients averaged over the last n iterations
def best_fit_meters(self):
return np.mean(self.recent_fits_meter, axis=0)
@property
# radius of curvature of the line in some units
def radius_of_curvature_pixels(self):
y_eval = 0
coeffs = self.best_fit_pixels
return ((1 + (2 * coeffs[0] * y_eval + coeffs[1]) ** 2) ** 1.5) / np.absolute(2 * coeffs[0])
@property
# radius of curvature of the line in some units
def radius_of_curvature_meters(self):
y_eval = 0
coeffs = self.last_fit_meter
return ((1 + (2 * coeffs[0] * y_eval + coeffs[1]) ** 2) ** 1.5) / np.absolute(2 * coeffs[0])
def find_lane_pixels(binary_warped, line_L, line_R, nwindows=9, verbose=False):
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0]//2:, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0]//2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# HYPERPARAMETERS
"""
# Choose the number of sliding windows
nwindows = 9 """
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0]//nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated later for each window in nwindows
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
### TO-DO: Find the four below boundaries of the window ###
win_xleft_low = leftx_current - margin # Update this
win_xleft_high = leftx_current + margin # Update this
win_xright_low = rightx_current - margin # Update this
win_xright_high = rightx_current + margin # Update this
# Draw the windows on the visualization image
out_img = cv2.rectangle(
out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2)
out_img = cv2.rectangle(
out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2)
### TO-DO: Identify the nonzero pixels in x and y within the window ###
good_left_inds = ((nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high) &
(nonzeroy >= win_y_low) & (nonzeroy < win_y_high)).nonzero()[0]
good_right_inds = ((nonzerox >= win_xright_low) & (nonzerox < win_xright_high) &
(nonzeroy >= win_y_low) & (nonzeroy < win_y_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
### TO-DO: If you found > minpix pixels, recenter next window ###
### (`right` or `leftx_current`) on their mean position ###
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices (previously was a list of lists of pixels)
try:
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
except ValueError:
# Avoids an error if the above is not implemented fully
pass
# Extract left and right line pixel positions
# leftx = nonzerox[left_lane_inds]
# lefty = nonzeroy[left_lane_inds]
# rightx = nonzerox[right_lane_inds]
# righty = nonzeroy[right_lane_inds]
leftx = line_L.allx = nonzerox[left_lane_inds]
lefty = line_L.ally = nonzeroy[left_lane_inds]
rightx = line_R.allx = nonzerox[right_lane_inds]
righty = line_R.ally = nonzeroy[right_lane_inds]
detected = True
if not list(line_L.allx) or not list(line_L.ally):
left_fit_pixel = line_L.last_fit_pixel
left_fit_meter = line_L.last_fit_meter
detected = False
else:
left_fit_pixel = np.polyfit(line_L.ally, line_L.allx, 2)
left_fit_meter = np.polyfit(
line_L.ally * ym_per_pix, line_L.allx * xm_per_pix, 2)
if not list(line_R.allx) or not list(line_R.ally):
right_fit_pixel = line_R.last_fit_pixel
right_fit_meter = line_R.last_fit_meter
detected = False
else:
right_fit_pixel = np.polyfit(line_R.ally, line_R.allx, 2)
right_fit_meter = np.polyfit(
line_R.ally * ym_per_pix, line_R.allx * xm_per_pix, 2)
#Fit a second order polynomial to each using `np.polyfit` ###
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
left_fit_meter = np.polyfit(lefty*ym_per_pix, leftx*xm_per_pix, 2)
right_fit_meter = np.polyfit(righty*ym_per_pix, rightx*xm_per_pix, 2)
line_L.update_line(left_fit_pixel, left_fit_meter, detected=detected)
line_R.update_line(right_fit_pixel, right_fit_meter, detected=detected)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0]-1, binary_warped.shape[0])
try:
left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2]
right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2]
except TypeError:
# Avoids an error if `left` and `right_fit` are still none or incorrect
print('The function failed to fit a line!')
left_fitx = 1*ploty**2 + 1*ploty
right_fitx = 1*ploty**2 + 1*ploty
## Visualization ##
# Colors in the left and right lane regions
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
if verbose:
# Plots the left and right polynomials on the lane lines
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.imshow(out_img, cmap='gray')
figManager = plt.get_current_fig_manager() # to control the figure to be showen
# maximaize the window of the plot to cover the whole screen
figManager.window.showMaximized()
plt.show()
return line_L, line_R, out_img
def get_fits_by_previous_fits(birdeye_binary, line_L, line_R, verbose=False):
"""
Get polynomial coefficients for lane-lines detected in an binary image.
This function starts from previously detected lane-lines to speed-up the search of lane-lines in the current frame.
:param birdeye_binary: input bird's eye view binary image
:param line_L: left lane-line previously detected
:param line_R: left lane-line previously detected
:param verbose: if True, display intermediate output
:return: updated lane lines and output image
"""
height, width = birdeye_binary.shape
left_fit_pixel = line_L.last_fit_pixel
right_fit_pixel = line_R.last_fit_pixel
# Identify the x and y positions of all nonzero pixels in the image
nonzero = birdeye_binary.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Set the width of the windows +/- margin
margin = 100
# Identify the nonzero pixels in x and y within the previous detected line-lane
left_lane_inds = (
(nonzerox > (left_fit_pixel[0] * (nonzeroy ** 2) + left_fit_pixel[1] * nonzeroy + left_fit_pixel[2] - margin)) & (
nonzerox < (left_fit_pixel[0] * (nonzeroy ** 2) + left_fit_pixel[1] * nonzeroy + left_fit_pixel[2] + margin)))
right_lane_inds = (
(nonzerox > (right_fit_pixel[0] * (nonzeroy ** 2) + right_fit_pixel[1] * nonzeroy + right_fit_pixel[2] - margin)) & (
nonzerox < (right_fit_pixel[0] * (nonzeroy ** 2) + right_fit_pixel[1] * nonzeroy + right_fit_pixel[2] + margin)))
# Extract left and right line pixel positions
line_L.allx, line_L.ally = nonzerox[left_lane_inds], nonzeroy[left_lane_inds]
line_R.allx, line_R.ally = nonzerox[right_lane_inds], nonzeroy[right_lane_inds]
# check if lane-line are detected in the prefious frame, if so, then load the fitting coefficents from the last frame. if not, then
detected = True
if not list(line_L.allx) or not list(line_L.ally):
# left_fit_pixel = line_L.best_fit_pixel
# left_fit_meter = line_L.best_fit_meter
left_fit_pixel = line_L.last_fit_pixel
left_fit_meter = line_L.last_fit_meter
detected = False
else:
# left_fit_pixel = line_L.best_fit_pixels
# left_fit_meter = line_L.best_fit_meters
left_fit_pixel = np.polyfit(line_L.ally, line_L.allx, 2)
left_fit_meter = np.polyfit(line_L.ally * ym_per_pix, line_L.allx * xm_per_pix, 2)
if not list(line_R.allx) or not list(line_R.ally):
# right_fit_pixel = line_R.best_fit_pixel
# right_fit_meter = line_R.best_fit_meter
right_fit_pixel = line_R.last_fit_pixel
right_fit_meter = line_R.last_fit_meter
detected = False
else:
# right_fit_pixel = line_R.best_fit_pixels
# right_fit_meter = line_R.best_fit_meters
right_fit_pixel = np.polyfit(line_R.ally, line_R.allx, 2)
right_fit_meter = np.polyfit(line_R.ally * ym_per_pix, line_R.allx * xm_per_pix, 2)
line_L.update_line(left_fit_pixel, left_fit_meter, detected=detected)
line_R.update_line(right_fit_pixel, right_fit_meter, detected=detected)
# AVG the lane-lines data detected over N iterations for both Left and Right lanes.
line_L.last_fit_pixel = left_fit_pixel = line_L.best_fit_pixels
line_L.last_fit_meter = left_fit_meter = line_L.best_fit_meters
line_R.last_fit_pixel = right_fit_pixel = line_R.best_fit_pixels
line_R.last_fit_meter = right_fit_meter = line_R.best_fit_meters
# Generate x and y values for plotting
ploty = np.linspace(0, height - 1, height)
left_fitx = left_fit_pixel[0] * ploty ** 2 + left_fit_pixel[1] * ploty + left_fit_pixel[2]
right_fitx = right_fit_pixel[0] * ploty ** 2 + right_fit_pixel[1] * ploty + right_fit_pixel[2]
# Create an image to draw on and an image to show the selection window
img_fit = np.dstack((birdeye_binary, birdeye_binary, birdeye_binary)) * 255
window_img = np.zeros_like(img_fit)
# Color in left and right line pixels
img_fit[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
img_fit[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
# Generate a polygon to illustrate the search window area
# And recast the x and y points into usable format for cv2.fillPoly()
left_line_window1 = np.array([np.transpose(np.vstack([left_fitx - margin, ploty]))])
left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx + margin, ploty])))])
left_line_pts = np.hstack((left_line_window1, left_line_window2))
right_line_window1 = np.array([np.transpose(np.vstack([right_fitx - margin, ploty]))])
right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx + margin, ploty])))])
right_line_pts = np.hstack((right_line_window1, right_line_window2))
# Draw the lane onto the warped blank image
cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0))
cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0))
result = cv2.addWeighted(img_fit, 1, window_img, 0.3, 0)
if verbose:
plt.imshow(result)
plt.plot(left_fitx, ploty, color='yellow')
plt.plot(right_fitx, ploty, color='yellow')
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.show()
return line_L, line_R, img_fit
def unwarp_lines(undist, color_warp, line_L, line_R, Minv, keep_history, verbose=False):
h, w, c = undist.shape
left_fit = line_L.average_fit if keep_history else line_L.last_fit_pixel
right_fit = line_R.average_fit if keep_history else line_R.last_fit_pixel
# Generate x and y values for plotting
ploty = np.linspace(0, h - 1, h)
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + \
right_fit[1] * ploty + right_fit[2]
# Create an image to draw the lines on
warp_zero = np.zeros_like(undist, dtype=np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array(
[np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(warp_zero, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(warp_zero, Minv, (w, h))
# Combine the result with the original image
result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0)
if verbose:
plt.imshow(cv2.cvtColor(result, code=cv2.COLOR_BGR2RGB))
figManager = plt.get_current_fig_manager() # to control the figure to be showen
# maximaize the window of the plot to cover the whole screen
figManager.window.showMaximized()
plt.show()
return result
if __name__ == '__main__':
line_L, line_R = Line(buffer_length=10), Line(buffer_length=10)
ret, mtx, dist, rvecs, tvecs = calibrateCamera_SLOW(
calib_images_directory='camera_cal')
# show result on test images
for test_img in glob.glob('test_images/*.jpg'):
img = cv2.imread(test_img)
img_undistorted = undistort(img, mtx, dist, verbose=False)
img_binary, closing, opening = binarize_image(
img_undistorted, verbose=False)
img_birdview, M, Minv = birdview(img_binary, verbose=False)
line_L, line_R, img_lanes = find_lane_pixels(
img_birdview, line_L, line_R, nwindows=9, verbose=True)
draw_lines_on_image = unwarp_lines(
img_undistorted, img_lanes, line_L, line_R, Minv, keep_history=False, verbose=True)