Skip to content

Latest commit

 

History

History
134 lines (116 loc) · 3.83 KB

README.md

File metadata and controls

134 lines (116 loc) · 3.83 KB

Project: Cloud Data Warehouse

Summary of the Project

Sparkify is a startup which wants to analyze the data they've been collecting on songs and user activity on their new music streaming app. The analytics team is particularly interested in understanding what songs users are listening to.

In this document I will provide discussion on the process and decisions for the ETL pipeline.

Files in the Repository

The project includes three files:

  • create_table.py: creates the fact and dimension tables for the star schema in Redshift.
  • etl.py: loads data from S3 into staging tables on Redshift and then processes that data into analytics tables on Redshift.
  • sql_queries.py: defines the SQL statements, which will be imported into the two other files above.

Configuration File

[CLUSTER]
HOST=
DB_NAME=
DB_USER=
DB_PASSWORD=
DB_PORT=

[IAM_ROLE]
ARN=

[S3]
LOG_DATA=s3://udacity-dend/log_data
LOG_JSONPATH=s3://udacity-dend/log_json_path.json
SONG_DATA=s3://udacity-dend/song_data

How to run the Python scripts

  1. Run create_tables.py to create the database and tables.
  2. Run etl.py to load the data into the project's tables.

Database schema

Staging Tables

Events

column type
artist varchar
auth varchar
first_name varchar
gender char(1)
item_session_id int
last_name varchar
length numeric
level varchar
location varchar
method varchar
page varchar
registration numeric
session_id int
song varchar
status int
ts bigint
user_agent varchar
user_id int

Songs

column type
num_songs int
artist_id varchar
artist_latitude numeric
artist_longitude numeric
artist_location varchar
artist_name varchar
song_id varchar
title varchar
duration float
year int

Fact Tables

songplays

Records in log data associated with song plays

column type
songplay_id serial (PK)
start_time TIMESTAMP (FK)
user_id int (FK)
level varchar
song_id varchar (FK)
artist_id varchar (FK)
session_id int
location varchar
user_agent varchar

Dimension Tables

users

users in the app

column type
user_id int (PK)
first_name varchar
last_name varchar
gender char(1)
level varchar

songs

songs in music database

column type
song_id varchar (PK)
title varchar
artist_id varchar (FK)
year int
duration numeric

artists

artists in music database

column type
artist_id varchar (PK)
name varchar
location varchar
latitude numeric
longitude numeric

time

timestamps of records in songplays broken down into specific units

column type
start_time TIMESTAMP (PK)
hour int
day int
week int
month int
year int
weekday int