-
Notifications
You must be signed in to change notification settings - Fork 10
/
settings.py
44 lines (38 loc) · 2.08 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import argparse
def get_settings():
parser = argparse.ArgumentParser()
# Seeds for random sampling
parser.add_argument('--seed', default=1)
parser.add_argument('--seed_data', default=1)
parser.add_argument('--batch_size', default=25)
parser.add_argument('--num_epochs', default=400)
parser.add_argument('--learning_rate', type=float, default=0.0003)
# It is possible use pretrained model for fine tuning
parser.add_argument('--use_pretrained', default=False)
# Number of binary features to be used for embeddings
parser.add_argument('--num_features', default=256)
# parser.add_argument('--num_features', default=16) - for cifar data
# Beta parameter
parser.add_argument('--beta', type=float, default=2.0)
# Gamma parameter parameter
parser.add_argument('--gamma', type=float, default=0.001)
# Lambda BRE
parser.add_argument('--lambda_bre', type=float, default=0.01)
#parser.add_argument('--lambda_bre', type=float, default=0.001) - for cifar_data
# Lambda DMR
parser.add_argument('--lambda_dmr', type=float, default=0.05)
#Location of pretrained weights
parser.add_argument('--generator_pretrained', default='generator_pretrained.npz')
parser.add_argument('--discriminator_pretrained', default='discriminator_pretrained.npz')
# Where weight for model should be saved
parser.add_argument('--generator_out', default='/home/lasagne/workspace_docker/models/generator_brown.npz')
parser.add_argument('--discriminator_out', default='/home/lasagne/workspace_docker/models/discriminator_brown.npz')
# Dir, where data should be downloaded
parser.add_argument('--data_dir', type=str, default='/home/lasagne/workspace_docker/data_2/')
parser.add_argument('--dataset_type', type=str, default='brown')
#parser.add_argument('--dataset_type', type=str, default='cifar10')
# Specify the train and test data for Brown Dataset
parser.add_argument('--data_name', type=str, default='yosemiteL')
parser.add_argument('--test_data', type=str, default='notredame')
args = parser.parse_args()
return args