forked from Humphries-Lab/Bayesian_strategy_analysis_Paper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Violin.m
346 lines (310 loc) · 14.4 KB
/
Violin.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
classdef Violin < handle
% Violin creates violin plots for some data
% A violin plot is an easy to read substitute for a box plot
% that replaces the box shape with a kernel density estimate of
% the data, and optionally overlays the data points itself.
%
% Additional constructor parameters include the width of the
% plot, the bandwidth of the kernel density estimation, and the
% X-axis position of the violin plot.
%
% Use <a href="matlab:help('violinplot')">violinplot</a> for a
% <a href="matlab:help('boxplot')">boxplot</a>-like wrapper for
% interactive plotting.
%
% See for more information on Violin Plots:
% J. L. Hintze and R. D. Nelson, "Violin plots: a box
% plot-density trace synergism," The American Statistician, vol.
% 52, no. 2, pp. 181-184, 1998.
%
% Violin Properties:
% ViolinColor - Fill color of the violin area and data points.
% Defaults to the next default color cycle.
% ViolinAlpha - Transparency of the ciolin area and data points.
% Defaults to 0.3.
% EdgeColor - Color of the violin area outline.
% Defaults to [0.5 0.5 0.5]
% BoxColor - Color of the box, whiskers, and the outlines of
% the median point and the notch indicators.
% Defaults to [0.5 0.5 0.5]
% MedianColor - Fill color of the median and notch indicators.
% Defaults to [1 1 1]
% ShowData - Whether to show data points.
% Defaults to true
% ShowNotches - Whether to show notch indicators.
% Defaults to false
% ShowMean - Whether to show mean indicator.
% Defaults to false
%
% Violin Children:
% ScatterPlot - <a href="matlab:help('scatter')">scatter</a> plot of the data points
% ViolinPlot - <a href="matlab:help('fill')">fill</a> plot of the kernel density estimate
% BoxPlot - <a href="matlab:help('fill')">fill</a> plot of the box between the quartiles
% WhiskerPlot - line <a href="matlab:help('plot')">plot</a> between the whisker ends
% MedianPlot - <a href="matlab:help('scatter')">scatter</a> plot of the median (one point)
% NotchPlots - <a href="matlab:help('scatter')">scatter</a> plots for the notch indicators
% MeanPlot - line <a href="matlab:help('plot')">plot</a> at mean value
% Copyright (c) 2016, Bastian Bechtold
% This code is released under the terms of the BSD 3-clause license
properties
ScatterPlot % scatter plot of the data points
ViolinPlot % fill plot of the kernel density estimate
BoxPlot % fill plot of the box between the quartiles
WhiskerPlot % line plot between the whisker ends
MedianPlot % scatter plot of the median (one point)
NotchPlots % scatter plots for the notch indicators
MeanPlot % line plot of the mean (horizontal line)
end
properties (Dependent=true)
ViolinColor % fill color of the violin area and data points
ViolinAlpha % transparency of the violin area and data points
EdgeColor % color of the violin area outline
BoxColor % color of box, whiskers, and median/notch edges
BoxWidth % width of box between the quartiles in axis space (default 10% of Violin plot width, 0.03)
MedianColor % fill color of median and notches
ShowData % whether to show data points
ShowNotches % whether to show notch indicators
ShowMean % whether to show mean indicator
end
methods
function obj = Violin(data, pos, varargin)
%Violin plots a violin plot of some data at pos
% VIOLIN(DATA, POS) plots a violin at x-position POS for
% a vector of DATA points.
%
% VIOLIN(..., 'PARAM1', val1, 'PARAM2', val2, ...)
% specifies optional name/value pairs:
% 'Width' Width of the violin in axis space.
% Defaults to 0.3
% 'Bandwidth' Bandwidth of the kernel density
% estimate. Should be between 10% and
% 40% of the data range.
% 'ViolinColor' Fill color of the violin area and
% data points. Defaults to the next
% default color cycle.
% 'ViolinAlpha' Transparency of the violin area and
% data points. Defaults to 0.3.
% 'EdgeColor' Color of the violin area outline.
% Defaults to [0.5 0.5 0.5]
% 'BoxColor' Color of the box, whiskers, and the
% outlines of the median point and the
% notch indicators. Defaults to
% [0.5 0.5 0.5]
% 'MedianColor' Fill color of the median and notch
% indicators. Defaults to [1 1 1]
% 'ShowData' Whether to show data points.
% Defaults to true
% 'ShowNotches' Whether to show notch indicators.
% Defaults to false
% 'ShowMean' Whether to show mean indicator.
% Defaults to false
args = obj.checkInputs(data, pos, varargin{:});
data = data(not(isnan(data)));
if numel(data) == 1
obj.MedianPlot = scatter(pos, data, 'filled');
obj.MedianColor = args.MedianColor;
obj.MedianPlot.MarkerEdgeColor = args.EdgeColor;
return
end
hold('on');
% calculate kernel density estimation for the violin
if isempty(data)
return
end
[density, value] = ksdensity(data, 'bandwidth', args.Bandwidth);
density = density(value >= min(data) & value <= max(data));
value = value(value >= min(data) & value <= max(data));
value(1) = min(data);
value(end) = max(data);
% all data is identical
if min(data) == max(data)
density = 1;
end
width = args.Width/max(density);
% plot the data points within the violin area
if length(density) > 1
jitterstrength = interp1(value, density*width, data);
else % all data is identical:
jitterstrength = density*width;
end
jitter = 2*(rand(size(data))-0.5);
obj.ScatterPlot = ...
scatter(pos + jitter.*jitterstrength, data, 'filled');
% plot the violin
obj.ViolinPlot = ... % plot color will be overwritten later
fill([pos+density*width pos-density(end:-1:1)*width], ...
[value value(end:-1:1)], [1 1 1]);
% plot the mini-boxplot within the violin
quartiles = quantile(data, [0.25, 0.5, 0.75]);
obj.BoxPlot = ... % plot color will be overwritten later
fill(pos+[-1,1,1,-1]*args.BoxWidth, ...
[quartiles(1) quartiles(1) quartiles(3) quartiles(3)], ...
[1 1 1]);
% plot the data mean
meanValue = mean(data);
if length(density) > 1
meanDensityWidth = interp1(value, density, meanValue)*width;
else % all data is identical:
meanDensityWidth = density*width;
end
if meanDensityWidth<args.BoxWidth/2
meanDensityWidth=args.BoxWidth/2;
end
obj.MeanPlot = plot(pos+[-1,1].*meanDensityWidth, ...
[meanValue, meanValue]);
obj.MeanPlot.LineWidth = 1;
IQR = quartiles(3) - quartiles(1);
lowhisker = quartiles(1) - 1.5*IQR;
lowhisker = max(lowhisker, min(data(data > lowhisker)));
hiwhisker = quartiles(3) + 1.5*IQR;
hiwhisker = min(hiwhisker, max(data(data < hiwhisker)));
if ~isempty(lowhisker) && ~isempty(hiwhisker)
obj.WhiskerPlot = plot([pos pos], [lowhisker hiwhisker]);
end
obj.MedianPlot = scatter(pos, quartiles(2), [], [1 1 1], 'filled');
obj.NotchPlots = ...
scatter(pos, quartiles(2)-1.57*IQR/sqrt(length(data)), ...
[], [1 1 1], 'filled', '^');
obj.NotchPlots(2) = ...
scatter(pos, quartiles(2)+1.57*IQR/sqrt(length(data)), ...
[], [1 1 1], 'filled', 'v');
obj.EdgeColor = args.EdgeColor;
obj.BoxColor = args.BoxColor;
obj.BoxWidth = args.BoxWidth;
obj.MedianColor = args.MedianColor;
if not(isempty(args.ViolinColor))
obj.ViolinColor = args.ViolinColor;
else
obj.ViolinColor = obj.ScatterPlot.CData;
end
obj.ViolinAlpha = args.ViolinAlpha;
obj.ShowData = args.ShowData;
obj.ShowNotches = args.ShowNotches;
obj.ShowMean = args.ShowMean;
end
function set.EdgeColor(obj, color)
if ~isempty(obj.ViolinPlot)
obj.ViolinPlot.EdgeColor = color;
end
end
function color = get.EdgeColor(obj)
if ~isempty(obj.ViolinPlot)
color = obj.ViolinPlot.EdgeColor;
end
end
function set.MedianColor(obj, color)
obj.MedianPlot.MarkerFaceColor = color;
if ~isempty(obj.NotchPlots)
obj.NotchPlots(1).MarkerFaceColor = color;
obj.NotchPlots(2).MarkerFaceColor = color;
end
end
function color = get.MedianColor(obj)
color = obj.MedianPlot.MarkerFaceColor;
end
function set.BoxColor(obj, color)
if ~isempty(obj.BoxPlot)
obj.BoxPlot.FaceColor = color;
obj.BoxPlot.EdgeColor = color;
obj.WhiskerPlot.Color = color;
obj.MedianPlot.MarkerEdgeColor = color;
obj.NotchPlots(1).MarkerFaceColor = color;
obj.NotchPlots(2).MarkerFaceColor = color;
end
end
function color = get.BoxColor(obj)
if ~isempty(obj.BoxPlot)
color = obj.BoxPlot.FaceColor;
end
end
function set.BoxWidth(obj,width)
if ~isempty(obj.BoxPlot)
pos=mean(obj.BoxPlot.XData);
obj.BoxPlot.XData=pos+[-1,1,1,-1]*width;
end
end
function width = get.BoxWidth(obj)
width=max(obj.BoxPlot.XData)-min(obj.BoxPlot.XData);
end
function set.ViolinColor(obj, color)
obj.ViolinPlot.FaceColor = color;
obj.ScatterPlot.MarkerFaceColor = color;
obj.MeanPlot.Color = color;
end
function color = get.ViolinColor(obj)
color = obj.ViolinPlot.FaceColor;
end
function set.ViolinAlpha(obj, alpha)
obj.ScatterPlot.MarkerFaceAlpha = alpha;
obj.ViolinPlot.FaceAlpha = alpha;
end
function alpha = get.ViolinAlpha(obj)
alpha = obj.ViolinPlot.FaceAlpha;
end
function set.ShowData(obj, yesno)
if yesno
obj.ScatterPlot.Visible = 'on';
else
obj.ScatterPlot.Visible = 'off';
end
end
function yesno = get.ShowData(obj)
if ~isempty(obj.ScatterPlot)
yesno = strcmp(obj.ScatterPlot.Visible, 'on');
end
end
function set.ShowNotches(obj, yesno)
if ~isempty(obj.NotchPlots)
if yesno
obj.NotchPlots(1).Visible = 'on';
obj.NotchPlots(2).Visible = 'on';
else
obj.NotchPlots(1).Visible = 'off';
obj.NotchPlots(2).Visible = 'off';
end
end
end
function yesno = get.ShowNotches(obj)
if ~isempty(obj.NotchPlots)
yesno = strcmp(obj.NotchPlots(1).Visible, 'on');
end
end
function set.ShowMean(obj, yesno)
if ~isempty(obj.MeanPlot)
if yesno
obj.MeanPlot.Visible = 'on';
else
obj.MeanPlot.Visible = 'off';
end
end
end
function yesno = get.ShowMean(obj)
if ~isempty(obj.MeanPlot)
yesno = strcmp(obj.MeanPlot.Visible, 'on');
end
end
end
methods (Access=private)
function results = checkInputs(obj, data, pos, varargin)
isscalarnumber = @(x) (isnumeric(x) & isscalar(x));
p = inputParser();
p.addRequired('Data', @isnumeric);
p.addRequired('Pos', isscalarnumber);
p.addParameter('Width', 0.3, isscalarnumber);
p.addParameter('Bandwidth', [], isscalarnumber);
iscolor = @(x) (isnumeric(x) & length(x) == 3);
p.addParameter('ViolinColor', [], iscolor);
p.addParameter('BoxColor', [0.5 0.5 0.5], iscolor);
p.addParameter('BoxWidth', 0.01, isscalarnumber);
p.addParameter('EdgeColor', [0.5 0.5 0.5], iscolor);
p.addParameter('MedianColor', [1 1 1], iscolor);
p.addParameter('ViolinAlpha', 0.3, isscalarnumber);
isscalarlogical = @(x) (islogical(x) & isscalar(x));
p.addParameter('ShowData', true, isscalarlogical);
p.addParameter('ShowNotches', false, isscalarlogical);
p.addParameter('ShowMean', false, isscalarlogical);
p.parse(data, pos, varargin{:});
results = p.Results;
end
end
end