-
Notifications
You must be signed in to change notification settings - Fork 1
/
inception_score.py
128 lines (100 loc) · 3.98 KB
/
inception_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from torch import nn
from torch.autograd import Variable
from torch.nn import functional as F
import torch.utils.data
import cv2
from torchvision.models.inception import inception_v3
import numpy as np
from scipy.stats import entropy
import glob
def inception_score(imgs, cuda=True, batch_size=32, resize=True, splits=1):
"""Computes the inception score of the generated images imgs
imgs -- Torch dataset of (3xHxW) numpy images normalized in the range [-1, 1]
cuda -- whether or not to run on GPU
batch_size -- batch size for feeding into Inception v3
splits -- number of splits
"""
N = len(imgs)
assert batch_size > 0
assert N > batch_size
# Set up dtype
if cuda:
dtype = torch.cuda.FloatTensor
else:
if torch.cuda.is_available():
print("WARNING: You have a CUDA device, so you should probably set cuda=True")
dtype = torch.FloatTensor
# Set up dataloader
dataloader = torch.utils.data.DataLoader(imgs, batch_size=batch_size)
# Load inception model
inception_model = inception_v3(pretrained=True, transform_input=False).type(dtype)
inception_model.eval();
up = nn.Upsample(size=(299, 299), mode='bilinear').type(dtype)
def get_pred(x):
if resize:
x = up(x)
x = inception_model(x)
return F.softmax(x).data.cpu().numpy()
# Get predictions
preds = np.zeros((N, 1000))
for i, batch in enumerate(dataloader, 0):
batch = batch.type(dtype)
batchv = Variable(batch)
batch_size_i = batch.size()[0]
preds[i*batch_size:i*batch_size + batch_size_i] = get_pred(batchv)
# Now compute the mean kl-div
split_scores = []
for k in range(splits):
part = preds[k * (N // splits): (k+1) * (N // splits), :]
py = np.mean(part, axis=0)
scores = []
for i in range(part.shape[0]):
pyx = part[i, :]
scores.append(entropy(pyx, py))
split_scores.append(np.exp(np.mean(scores)))
return np.mean(split_scores), np.std(split_scores)
if __name__ == '__main__':
class IgnoreLabelDataset(torch.utils.data.Dataset):
def __init__(self, orig):
self.orig = orig
def __getitem__(self, index):
return self.orig[index][0]
def __len__(self):
return len(self.orig)
import torchvision.datasets as dset
import torchvision.transforms as transforms
cifar = dset.CIFAR10(root='data/', download=True,
transform=transforms.Compose([
transforms.Scale(32),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
)
class CustomDataset(torch.utils.data.Dataset):
def __init__(self):
self.imgs_path = "valid_lightweight/real/"
file_list = glob.glob(self.imgs_path + "*")
# print(file_list)
self.data = []
for img_path in file_list:
# print(img_path)
self.data.append(img_path)
print(len(self.data))
self.img_dim = (299, 299)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
img_path = self.data[idx]
img = cv2.imread(img_path)
img = cv2.resize(img, self.img_dim)
resultimage = np.zeros((299, 299))
normalizedimage = cv2.normalize(img,resultimage, -1, 1, cv2.NORM_MINMAX)
img_tensor = torch.from_numpy(normalizedimage)
img_tensor = img_tensor.permute(2, 0, 1)
return img_tensor
print ("Calculating Inception Score...")
# print (inception_score(IgnoreLabelDataset(cifar), cuda=True, batch_size=32, resize=True, splits=10))
# imgs = CustomDataset()
# print(imgs)
print (inception_score(CustomDataset(), cuda=True, batch_size=32, resize=False, splits=10))