-
Notifications
You must be signed in to change notification settings - Fork 0
/
PJ_isea.c
1088 lines (901 loc) · 22.5 KB
/
PJ_isea.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* This code was entirely written by Nathan Wagner
* and is in the public domain.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
/*
* Proj 4 provides its own entry points into
* the code, so none of the library functions
* need to be global
*/
#define ISEA_STATIC static
#ifndef ISEA_STATIC
#define ISEA_STATIC
#endif
struct hex {
int iso;
int x, y, z;
};
/* y *must* be positive down as the xy /iso conversion assumes this */
ISEA_STATIC
int hex_xy(struct hex *h) {
if (!h->iso) return 1;
if (h->x >= 0) {
h->y = -h->y - (h->x+1)/2;
} else {
/* need to round toward -inf, not toward zero, so x-1 */
h->y = -h->y - h->x/2;
}
h->iso = 0;
return 1;
}
ISEA_STATIC
int hex_iso(struct hex *h) {
if (h->iso) return 1;
if (h->x >= 0) {
h->y = (-h->y - (h->x+1)/2);
} else {
/* need to round toward -inf, not toward zero, so x-1 */
h->y = (-h->y - (h->x)/2);
}
h->z = -h->x - h->y;
h->iso = 1;
return 1;
}
ISEA_STATIC
int hexbin2(int horizontal, double width, double x, double y,
int *i, int *j) {
double z, rx, ry, rz;
double abs_dx, abs_dy, abs_dz;
int ix, iy, iz, s;
struct hex h;
x = x / cos(30 * M_PI / 180.0); /* rotated X coord */
y = y - x / 2.0; /* adjustment for rotated X */
/* adjust for actual hexwidth */
x /= width;
y /= width;
z = -x - y;
ix = rx = floor(x + 0.5);
iy = ry = floor(y + 0.5);
iz = rz = floor(z + 0.5);
s = ix + iy + iz;
if (s) {
abs_dx = fabs(rx - x);
abs_dy = fabs(ry - y);
abs_dz = fabs(rz - z);
if (abs_dx >= abs_dy && abs_dx >= abs_dz) {
ix -= s;
} else if (abs_dy >= abs_dx && abs_dy >= abs_dz) {
iy -= s;
} else {
iz -= s;
}
}
h.x = ix;
h.y = iy;
h.z = iz;
h.iso = 1;
hex_xy(&h);
*i = h.x;
*j = h.y;
return ix * 100 + iy;
}
#ifndef ISEA_STATIC
#define ISEA_STATIC
#endif
enum isea_poly { ISEA_NONE, ISEA_ICOSAHEDRON = 20 };
enum isea_topology { ISEA_HEXAGON=6, ISEA_TRIANGLE=3, ISEA_DIAMOND=4 };
enum isea_address_form { ISEA_GEO, ISEA_Q2DI, ISEA_SEQNUM, ISEA_INTERLEAVE,
ISEA_PLANE, ISEA_Q2DD, ISEA_PROJTRI, ISEA_VERTEX2DD, ISEA_HEX
};
struct isea_dgg {
int polyhedron; /* ignored, icosahedron */
double o_lat, o_lon, o_az; /* orientation, radians */
int pole; /* true if standard snyder */
int topology; /* ignored, hexagon */
int aperture; /* valid values depend on partitioning method */
int resolution;
double radius; /* radius of the earth in meters, ignored 1.0 */
int output; /* an isea_address_form */
int triangle; /* triangle of last transformed point */
int quad; /* quad of last transformed point */
unsigned long serial;
};
struct isea_pt {
double x, y;
};
struct isea_geo {
double lon, lat;
};
struct isea_address {
int type; /* enum isea_address_form */
int number;
double x,y; /* or i,j or lon,lat depending on type */
};
/* ENDINC */
enum snyder_polyhedron {
SNYDER_POLY_HEXAGON, SNYDER_POLY_PENTAGON,
SNYDER_POLY_TETRAHEDRON, SNYDER_POLY_CUBE,
SNYDER_POLY_OCTAHEDRON, SNYDER_POLY_DODECAHEDRON,
SNYDER_POLY_ICOSAHEDRON
};
struct snyder_constants {
double g, G, theta, ea_w, ea_a, ea_b, g_w, g_a, g_b;
};
/* TODO put these in radians to avoid a later conversion */
ISEA_STATIC
struct snyder_constants constants[] = {
{23.80018260, 62.15458023, 60.0, 3.75, 1.033, 0.968, 5.09, 1.195, 1.0},
{20.07675127, 55.69063953, 54.0, 2.65, 1.030, 0.983, 3.59, 1.141, 1.027},
{0.0},
{0.0},
{0.0},
{0.0},
{37.37736814, 36.0, 30.0, 17.27, 1.163, 0.860, 13.14, 1.584, 1.0},
};
#define E 52.62263186
#define F 10.81231696
#define DEG60 1.04719755119659774614
#define DEG120 2.09439510239319549229
#define DEG72 1.25663706143591729537
#define DEG90 1.57079632679489661922
#define DEG144 2.51327412287183459075
#define DEG36 0.62831853071795864768
#define DEG108 1.88495559215387594306
#define DEG180 M_PI
/* sqrt(5)/M_PI */
#define ISEA_SCALE 0.8301572857837594396028083
/* 26.565051177 degrees */
#define V_LAT 0.46364760899944494524
#define RAD2DEG (180.0/M_PI)
#define DEG2RAD (M_PI/180.0)
ISEA_STATIC
struct isea_geo vertex[] = {
{0.0, DEG90},
{DEG180, V_LAT},
{-DEG108, V_LAT},
{-DEG36, V_LAT},
{DEG36, V_LAT},
{DEG108, V_LAT},
{-DEG144, -V_LAT},
{-DEG72, -V_LAT},
{0.0, -V_LAT},
{DEG72, -V_LAT},
{DEG144, -V_LAT},
{0.0, -DEG90}
};
/* TODO make an isea_pt array of the vertices as well */
static int tri_v1[] = {0, 0, 0, 0, 0, 0, 6, 7, 8, 9, 10, 2, 3, 4, 5, 1, 11, 11, 11, 11, 11};
/* 52.62263186 */
#define E_RAD 0.91843818702186776133
/* 10.81231696 */
#define F_RAD 0.18871053072122403508
/* triangle Centers */
struct isea_geo icostriangles[] = {
{0.0, 0.0},
{-DEG144, E_RAD},
{-DEG72, E_RAD},
{0.0, E_RAD},
{DEG72, E_RAD},
{DEG144, E_RAD},
{-DEG144, F_RAD},
{-DEG72, F_RAD},
{0.0, F_RAD},
{DEG72, F_RAD},
{DEG144, F_RAD},
{-DEG108, -F_RAD},
{-DEG36, -F_RAD},
{DEG36, -F_RAD},
{DEG108, -F_RAD},
{DEG180, -F_RAD},
{-DEG108, -E_RAD},
{-DEG36, -E_RAD},
{DEG36, -E_RAD},
{DEG108, -E_RAD},
{DEG180, -E_RAD},
};
static double
az_adjustment(int triangle)
{
double adj;
struct isea_geo v;
struct isea_geo c;
v = vertex[tri_v1[triangle]];
c = icostriangles[triangle];
/* TODO looks like the adjustment is always either 0 or 180 */
/* at least if you pick your vertex carefully */
adj = atan2(cos(v.lat) * sin(v.lon - c.lon),
cos(c.lat) * sin(v.lat)
- sin(c.lat) * cos(v.lat) * cos(v.lon - c.lon));
return adj;
}
/* R tan(g) sin(60) */
#define TABLE_G 0.6615845383
/* H = 0.25 R tan g = */
#define TABLE_H 0.1909830056
#define RPRIME 0.91038328153090290025
ISEA_STATIC
struct isea_pt
isea_triangle_xy(int triangle)
{
struct isea_pt c;
double Rprime = 0.91038328153090290025;
triangle = (triangle - 1) % 20;
c.x = TABLE_G * ((triangle % 5) - 2) * 2.0;
if (triangle > 9) {
c.x += TABLE_G;
}
switch (triangle / 5) {
case 0:
c.y = 5.0 * TABLE_H;
break;
case 1:
c.y = TABLE_H;
break;
case 2:
c.y = -TABLE_H;
break;
case 3:
c.y = -5.0 * TABLE_H;
break;
default:
/* should be impossible */
exit(EXIT_FAILURE);
};
c.x *= Rprime;
c.y *= Rprime;
return c;
}
/* snyder eq 14 */
static double
sph_azimuth(double f_lon, double f_lat, double t_lon, double t_lat)
{
double az;
az = atan2(cos(t_lat) * sin(t_lon - f_lon),
cos(f_lat) * sin(t_lat)
- sin(f_lat) * cos(t_lat) * cos(t_lon - f_lon)
);
return az;
}
/* coord needs to be in radians */
ISEA_STATIC
int
isea_snyder_forward(struct isea_geo * ll, struct isea_pt * out)
{
int i;
/*
* spherical distance from center of polygon face to any of its
* vertexes on the globe
*/
double g;
/*
* spherical angle between radius vector to center and adjacent edge
* of spherical polygon on the globe
*/
double G;
/*
* plane angle between radius vector to center and adjacent edge of
* plane polygon
*/
double theta;
/* additional variables from snyder */
double q, Rprime, H, Ag, Azprime, Az, dprime, f, rho,
x, y;
/* variables used to store intermediate results */
double cot_theta, tan_g, az_offset;
/* how many multiples of 60 degrees we adjust the azimuth */
int Az_adjust_multiples;
struct snyder_constants c;
/*
* TODO by locality of reference, start by trying the same triangle
* as last time
*/
/* TODO put these constants in as radians to begin with */
c = constants[SNYDER_POLY_ICOSAHEDRON];
theta = c.theta * DEG2RAD;
g = c.g * DEG2RAD;
G = c.G * DEG2RAD;
for (i = 1; i <= 20; i++) {
double z;
struct isea_geo center;
center = icostriangles[i];
/* step 1 */
#if 0
z = sph_distance(center.lon, center.lat, ll->lon, ll->lat);
#else
z = acos(sin(center.lat) * sin(ll->lat)
+ cos(center.lat) * cos(ll->lat) * cos(ll->lon - center.lon));
#endif
/* not on this triangle */
if (z > g + 0.000005) { /* TODO DBL_EPSILON */
continue;
}
Az = sph_azimuth(ll->lon, ll->lat, center.lon, center.lat);
Az = atan2(cos(ll->lat) * sin(ll->lon - center.lon),
cos(center.lat) * sin(ll->lat)
- sin(center.lat) * cos(ll->lat) * cos(ll->lon - center.lon)
);
/* step 2 */
/* This calculates "some" vertex coordinate */
az_offset = az_adjustment(i);
Az -= az_offset;
/* TODO I don't know why we do this. It's not in snyder */
/* maybe because we should have picked a better vertex */
if (Az < 0.0) {
Az += 2.0 * M_PI;
}
/*
* adjust Az for the point to fall within the range of 0 to
* 2(90 - theta) or 60 degrees for the hexagon, by
* and therefore 120 degrees for the triangle
* of the icosahedron
* subtracting or adding multiples of 60 degrees to Az and
* recording the amount of adjustment
*/
Az_adjust_multiples = 0;
while (Az < 0.0) {
Az += DEG120;
Az_adjust_multiples--;
}
while (Az > DEG120 + DBL_EPSILON) {
Az -= DEG120;
Az_adjust_multiples++;
}
/* step 3 */
cot_theta = 1.0 / tan(theta);
tan_g = tan(g); /* TODO this is a constant */
/* Calculate q from eq 9. */
/* TODO cot_theta is cot(30) */
q = atan2(tan_g, cos(Az) + sin(Az) * cot_theta);
/* not in this triangle */
if (z > q + 0.000005) {
continue;
}
/* step 4 */
/* Apply equations 5-8 and 10-12 in order */
/* eq 5 */
/* Rprime = 0.9449322893 * R; */
/* R' in the paper is for the truncated */
Rprime = 0.91038328153090290025;
/* eq 6 */
H = acos(sin(Az) * sin(G) * cos(g) - cos(Az) * cos(G));
/* eq 7 */
/* Ag = (Az + G + H - DEG180) * M_PI * R * R / DEG180; */
Ag = Az + G + H - DEG180;
/* eq 8 */
Azprime = atan2(2.0 * Ag, Rprime * Rprime * tan_g * tan_g - 2.0 * Ag * cot_theta);
/* eq 10 */
/* cot(theta) = 1.73205080756887729355 */
dprime = Rprime * tan_g / (cos(Azprime) + sin(Azprime) * cot_theta);
/* eq 11 */
f = dprime / (2.0 * Rprime * sin(q / 2.0));
/* eq 12 */
rho = 2.0 * Rprime * f * sin(z / 2.0);
/*
* add back the same 60 degree multiple adjustment from step
* 2 to Azprime
*/
Azprime += DEG120 * Az_adjust_multiples;
/* calculate rectangular coordinates */
x = rho * sin(Azprime);
y = rho * cos(Azprime);
/*
* TODO
* translate coordinates to the origin for the particular
* hexagon on the flattened polyhedral map plot
*/
out->x = x;
out->y = y;
return i;
}
/*
* should be impossible, this implies that the coordinate is not on
* any triangle
*/
fprintf(stderr, "impossible transform: %f %f is not on any triangle\n",
ll->lon * RAD2DEG, ll->lat * RAD2DEG);
exit(EXIT_FAILURE);
/* not reached */
return 0; /* supresses a warning */
}
/*
* return the new coordinates of any point in orginal coordinate system.
* Define a point (newNPold) in orginal coordinate system as the North Pole in
* new coordinate system, and the great circle connect the original and new
* North Pole as the lon0 longitude in new coordinate system, given any point
* in orginal coordinate system, this function return the new coordinates.
*/
#define PRECISION 0.0000000000005
/* formula from Snyder, Map Projections: A working manual, p31 */
/*
* old north pole at np in new coordinates
* could be simplified a bit with fewer intermediates
*
* TODO take a result pointer
*/
ISEA_STATIC
struct isea_geo
snyder_ctran(struct isea_geo * np, struct isea_geo * pt)
{
struct isea_geo npt;
double alpha, phi, lambda, lambda0, beta, lambdap, phip;
double sin_phip;
double lp_b; /* lambda prime minus beta */
double cos_p, sin_a;
phi = pt->lat;
lambda = pt->lon;
alpha = np->lat;
beta = np->lon;
lambda0 = beta;
cos_p = cos(phi);
sin_a = sin(alpha);
/* mpawm 5-7 */
sin_phip = sin_a * sin(phi) - cos(alpha) * cos_p * cos(lambda - lambda0);
/* mpawm 5-8b */
/* use the two argument form so we end up in the right quadrant */
lp_b = atan2(cos_p * sin(lambda - lambda0),
(sin_a * cos_p * cos(lambda - lambda0) + cos(alpha) * sin(phi)));
lambdap = lp_b + beta;
/* normalize longitude */
/* TODO can we just do a modulus ? */
lambdap = fmod(lambdap, 2 * M_PI);
while (lambdap > M_PI)
lambdap -= 2 * M_PI;
while (lambdap < -M_PI)
lambdap += 2 * M_PI;
phip = asin(sin_phip);
npt.lat = phip;
npt.lon = lambdap;
return npt;
}
ISEA_STATIC
struct isea_geo
isea_ctran(struct isea_geo * np, struct isea_geo * pt, double lon0)
{
struct isea_geo npt;
np->lon += M_PI;
npt = snyder_ctran(np, pt);
np->lon -= M_PI;
npt.lon -= (M_PI - lon0 + np->lon);
/*
* snyder is down tri 3, isea is along side of tri1 from vertex 0 to
* vertex 1 these are 180 degrees apart
*/
npt.lon += M_PI;
/* normalize longitude */
npt.lon = fmod(npt.lon, 2 * M_PI);
while (npt.lon > M_PI)
npt.lon -= 2 * M_PI;
while (npt.lon < -M_PI)
npt.lon += 2 * M_PI;
return npt;
}
/* in radians */
#define ISEA_STD_LAT 1.01722196792335072101
#define ISEA_STD_LON .19634954084936207740
/* fuller's at 5.2454 west, 2.3009 N, adjacent at 7.46658 deg */
ISEA_STATIC
int
isea_grid_init(struct isea_dgg * g)
{
if (!g)
return 0;
g->polyhedron = 20;
g->o_lat = ISEA_STD_LAT;
g->o_lon = ISEA_STD_LON;
g->o_az = 0.0;
g->aperture = 4;
g->resolution = 6;
g->radius = 1.0;
g->topology = 6;
return 1;
}
ISEA_STATIC
int
isea_orient_isea(struct isea_dgg * g)
{
if (!g)
return 0;
g->o_lat = ISEA_STD_LAT;
g->o_lon = ISEA_STD_LON;
g->o_az = 0.0;
return 1;
}
ISEA_STATIC
int
isea_orient_pole(struct isea_dgg * g)
{
if (!g)
return 0;
g->o_lat = M_PI / 2.0;
g->o_lon = 0.0;
g->o_az = 0;
return 1;
}
ISEA_STATIC
int
isea_transform(struct isea_dgg * g, struct isea_geo * in,
struct isea_pt * out)
{
struct isea_geo i, pole;
int tri;
pole.lat = g->o_lat;
pole.lon = g->o_lon;
i = isea_ctran(&pole, in, g->o_az);
tri = isea_snyder_forward(&i, out);
out->x *= g->radius;
out->y *= g->radius;
g->triangle = tri;
return tri;
}
#define DOWNTRI(tri) (((tri - 1) / 5) % 2 == 1)
ISEA_STATIC
void
isea_rotate(struct isea_pt * pt, double degrees)
{
double rad;
double x, y;
rad = -degrees * M_PI / 180.0;
while (rad >= 2.0 * M_PI) rad -= 2.0 * M_PI;
while (rad <= -2.0 * M_PI) rad += 2.0 * M_PI;
x = pt->x * cos(rad) + pt->y * sin(rad);
y = -pt->x * sin(rad) + pt->y * cos(rad);
pt->x = x;
pt->y = y;
}
ISEA_STATIC
int isea_tri_plane(int tri, struct isea_pt *pt, double radius) {
struct isea_pt tc; /* center of triangle */
if (DOWNTRI(tri)) {
isea_rotate(pt, 180.0);
}
tc = isea_triangle_xy(tri);
tc.x *= radius;
tc.y *= radius;
pt->x += tc.x;
pt->y += tc.y;
return tri;
}
/* convert projected triangle coords to quad xy coords, return quad number */
ISEA_STATIC
int
isea_ptdd(int tri, struct isea_pt *pt) {
int downtri, quad;
downtri = (((tri - 1) / 5) % 2 == 1);
quad = ((tri - 1) % 5) + ((tri - 1) / 10) * 5 + 1;
isea_rotate(pt, downtri ? 240.0 : 60.0);
if (downtri) {
pt->x += 0.5;
/* pt->y += cos(30.0 * M_PI / 180.0); */
pt->y += .86602540378443864672;
}
return quad;
}
ISEA_STATIC
int
isea_dddi_ap3odd(struct isea_dgg *g, int quad, struct isea_pt *pt, struct isea_pt *di)
{
struct isea_pt v;
double hexwidth;
double sidelength; /* in hexes */
int d, i;
int maxcoord;
struct hex h;
/* This is the number of hexes from apex to base of a triangle */
sidelength = (pow(2.0, g->resolution) + 1.0) / 2.0;
/* apex to base is cos(30deg) */
hexwidth = cos(M_PI / 6.0) / sidelength;
/* TODO I think sidelength is always x.5, so
* (int)sidelength * 2 + 1 might be just as good
*/
maxcoord = (int) (sidelength * 2.0 + 0.5);
v = *pt;
hexbin2(0, hexwidth, v.x, v.y, &h.x, &h.y);
h.iso = 0;
hex_iso(&h);
d = h.x - h.z;
i = h.x + h.y + h.y;
/*
* you want to test for max coords for the next quad in the same
* "row" first to get the case where both are max
*/
if (quad <= 5) {
if (d == 0 && i == maxcoord) {
/* north pole */
quad = 0;
d = 0;
i = 0;
} else if (i == maxcoord) {
/* upper right in next quad */
quad += 1;
if (quad == 6)
quad = 1;
i = maxcoord - d;
d = 0;
} else if (d == maxcoord) {
/* lower right in quad to lower right */
quad += 5;
d = 0;
}
} else if (quad >= 6) {
if (i == 0 && d == maxcoord) {
/* south pole */
quad = 11;
d = 0;
i = 0;
} else if (d == maxcoord) {
/* lower right in next quad */
quad += 1;
if (quad == 11)
quad = 6;
d = maxcoord - i;
i = 0;
} else if (i == maxcoord) {
/* upper right in quad to upper right */
quad = (quad - 4) % 5;
i = 0;
}
}
di->x = d;
di->y = i;
g->quad = quad;
return quad;
}
ISEA_STATIC
int
isea_dddi(struct isea_dgg *g, int quad, struct isea_pt *pt, struct isea_pt *di) {
struct isea_pt v;
double hexwidth;
int sidelength; /* in hexes */
struct hex h;
if (g->aperture == 3 && g->resolution % 2 != 0) {
return isea_dddi_ap3odd(g, quad, pt, di);
}
/* todo might want to do this as an iterated loop */
if (g->aperture >0) {
sidelength = (int) (pow(g->aperture, g->resolution / 2.0) + 0.5);
} else {
sidelength = g->resolution;
}
hexwidth = 1.0 / sidelength;
v = *pt;
isea_rotate(&v, -30.0);
hexbin2(0, hexwidth, v.x, v.y, &h.x, &h.y);
h.iso = 0;
hex_iso(&h);
/* we may actually be on another quad */
if (quad <= 5) {
if (h.x == 0 && h.z == -sidelength) {
/* north pole */
quad = 0;
h.z = 0;
h.y = 0;
h.x = 0;
} else if (h.z == -sidelength) {
quad = quad + 1;
if (quad == 6)
quad = 1;
h.y = sidelength - h.x;
h.z = h.x - sidelength;
h.x = 0;
} else if (h.x == sidelength) {
quad += 5;
h.y = -h.z;
h.x = 0;
}
} else if (quad >= 6) {
if (h.z == 0 && h.x == sidelength) {
/* south pole */
quad = 11;
h.x = 0;
h.y = 0;
h.z = 0;
} else if (h.x == sidelength) {
quad = quad + 1;
if (quad == 11)
quad = 6;
h.x = h.y + sidelength;
h.y = 0;
h.z = -h.x;
} else if (h.y == -sidelength) {
quad -= 4;
h.y = 0;
h.z = -h.x;
}
}
di->x = h.x;
di->y = -h.z;
g->quad = quad;
return quad;
}
ISEA_STATIC
int isea_ptdi(struct isea_dgg *g, int tri, struct isea_pt *pt,
struct isea_pt *di) {
struct isea_pt v;
int quad;
v = *pt;
quad = isea_ptdd(tri, &v);
quad = isea_dddi(g, quad, &v, di);
return quad;
}
/* q2di to seqnum */
ISEA_STATIC
int isea_disn(struct isea_dgg *g, int quad, struct isea_pt *di) {
int sidelength;
int sn, height;
int hexes;
if (quad == 0) {
g->serial = 1;
return (int)g->serial;
}
/* hexes in a quad */
hexes = (int) (pow(g->aperture, g->resolution) + 0.5);
if (quad == 11) {
g->serial = 1 + 10 * hexes + 1;
return (int)g->serial;
}
if (g->aperture == 3 && g->resolution % 2 == 1) {
height = (int) (pow(g->aperture, (g->resolution - 1) / 2.0));
sn = ((int) di->x) * height;
sn += ((int) di->y) / height;
sn += (quad - 1) * hexes;
sn += 2;
} else {
sidelength = (int) (pow(g->aperture, g->resolution / 2.0) + 0.5);
sn = (quad - 1) * hexes + sidelength * di->x + di->y + 2;
}
g->serial = sn;
return sn;
}
/* TODO just encode the quad in the d or i coordinate
* quad is 0-11, which can be four bits.
* d' = d << 4 + q, d = d' >> 4, q = d' & 0xf
*/
/* convert a q2di to global hex coord */
ISEA_STATIC
int isea_hex(struct isea_dgg *g, int tri,
struct isea_pt *pt, struct isea_pt *hex) {
struct isea_pt v;
int sidelength;
int d, i, x, y, quad;
double oddsl;
quad = isea_ptdi(g, tri, pt, &v);
hex->x = ((int)v.x << 4) + quad;
hex->y = v.y;
return 1;
}
ISEA_STATIC
struct isea_pt
isea_forward(struct isea_dgg *g, struct isea_geo *in)
{
int tri, downtri, quad;
struct isea_pt out, coord;
tri = isea_transform(g, in, &out);
downtri = (((tri - 1) / 5) % 2 == 1);
quad = ((tri - 1) % 5) + ((tri - 1) / 10) * 5 + 1;
if (g->output == ISEA_PLANE) {
isea_tri_plane(tri, &out, g->radius);
return out;
}
/* convert to isea standard triangle size */
out.x = out.x / g->radius * ISEA_SCALE;
out.y = out.y / g->radius * ISEA_SCALE;
out.x += 0.5;
out.y += 2.0 * .14433756729740644112;
switch (g->output) {
case ISEA_PROJTRI:
/* nothing to do, already in projected triangle */
break;
case ISEA_VERTEX2DD:
g->quad = isea_ptdd(tri, &out);
break;
case ISEA_Q2DD:
/* Same as above, we just don't print as much */
g->quad = isea_ptdd(tri, &out);
break;
case ISEA_Q2DI:
g->quad = isea_ptdi(g, tri, &out, &coord);
return coord;
break;
case ISEA_SEQNUM:
isea_ptdi(g, tri, &out, &coord);
/* disn will set g->serial */
isea_disn(g, g->quad, &coord);
return coord;
break;
case ISEA_HEX:
isea_hex(g, tri, &out, &coord);
return coord;
break;
}
return out;
}
/*
* Proj 4 integration code follows
*/
#define PROJ_PARMS__ \
struct isea_dgg dgg;
#define PJ_LIB__
#include <projects.h>
PROJ_HEAD(isea, "Icosahedral Snyder Equal Area") "\n\tSph";
FORWARD(s_forward);
struct isea_pt out;
struct isea_geo in;
in.lon = lp.lam;