-
Notifications
You must be signed in to change notification settings - Fork 12
/
gpt2_parity.py
406 lines (316 loc) · 16.3 KB
/
gpt2_parity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
# This script uses different configurations in mixed precision conversion for GPT-2 model, and
# measures the inference latency, top 1 match rate (compared to PyTorch FP32 model) and ONNX model size.
# It outputs a csv file with Mann-Whitney U test and T-Test on each pair of experiments, where
# pvalue < 0.05 means two experiments have significant difference on top 1 match rate.
# User could use this script to select the best mixed precision model according to these metrics.
from convert_to_onnx import main, get_latency_name
import os
import argparse
import logging
from gpt2_helper import PRETRAINED_GPT2_MODELS, Gpt2Helper
from benchmark_helper import setup_logger
from onnx_model import OnnxModel
import onnx
import csv
import datetime
import scipy.stats
import torch
logger = logging.getLogger('')
def parse_arguments(argv=None):
parser = argparse.ArgumentParser()
parser.add_argument('-m',
'--model_name_or_path',
required=True,
type=str,
help='Model path, or pretrained model name in the list: ' + ', '.join(PRETRAINED_GPT2_MODELS))
parser.add_argument('--csv',
required=False,
type=str,
default='gpt2_parity_results.csv',
help='path of csv file to save the result')
parser.add_argument('--test_cases', required=False, type=int, default=500, help="number of test cases per run")
parser.add_argument('--runs', required=False, type=int, default=40, help="number of repeated runs")
parser.add_argument('--use_gpu', required=False, action='store_true', help="use GPU for inference")
parser.set_defaults(use_gpu=False)
parser.add_argument('--all', required=False, action='store_true', help="run all combinations of mixed precision")
parser.set_defaults(all=False)
parser.add_argument('-e', '--use_external_data_format', required=False, action='store_true')
parser.set_defaults(use_external_data_format=False)
parser.add_argument('--verbose', required=False, action='store_true')
parser.set_defaults(verbose=False)
parser.add_argument('--skip_test',
required=False,
action='store_true',
help="do not run test, and only rank experiments based on existing csv file")
parser.set_defaults(skip_test=False)
args = parser.parse_args(argv)
return args
class ParityTask:
def __init__(self, test_cases, total_runs, csv_path):
self.total_runs = total_runs
self.test_cases = test_cases
self.csv_path = csv_path
self.results = []
self.run_id = 0
def run(self, argv, experiment_name):
start_time = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
run_id = f"{start_time}_{self.run_id}"
self.run_id += 1
try:
result = main(argv + ["-t", f"{self.test_cases}", "-r", f"{self.total_runs}"],
experiment_name=experiment_name,
run_id=run_id,
csv_filename=self.csv_path)
except:
logger.exception(f"Failed to run experiment {experiment_name}")
if result:
self.results.append(result)
def load_results_from_csv(csv_path):
rows = []
import csv
with open(csv_path, newline='') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
rows.append(row)
return rows
def score(row):
"""Scoring function based on 3 metrics. The larger score is better."""
latency_in_ms = float(row[get_latency_name()])
top1_match_rate = float(row["top1_match_rate"])
onnx_size_in_MB = float(row["onnx_size_in_MB"])
# A simple scoring function: cost of 0.1ms latency ~ 0.1% match rate ~ 100MB size
return (top1_match_rate * 1000 - latency_in_ms * 10 - onnx_size_in_MB / 100)
def print_wins(wins, rows, test_name):
print()
print("*" * 10)
row_map = {}
for row in rows:
row_map[row["run_id"]] = row
sorted_wins = dict(sorted(wins.items(), key=lambda item: (item[1], score(row_map[item[0]])), reverse=True))
logger.debug(f"{test_name} Wins:{sorted_wins}")
logger.info(f"Based on {test_name} wins and a scoring function, the ranking:")
rank = 0
previous_value = -1
count = 0
for key, value in sorted_wins.items():
if value != previous_value:
rank = count
previous_value = value
count += 1
for row in rows:
if row["run_id"] == key:
logger.info(
"{:02d}: WINs={:02d}, run_id={}, latency={:5.2f} top1_match={:.4f} size={}_MB experiment={} {}".
format(
rank, value, key, float(row[get_latency_name()]), float(row["top1_match_rate"]),
row["onnx_size_in_MB"], row["experiment"], " (Half2 Disabled)" if
(row['ORT_CUDA_GEMM_OPTIONS'] == "4" and "Half2" not in row["experiment"]) else ""))
break
def run_significance_test(rows, output_csv_path):
"""Run U test and T test.
"""
utest_wins = {}
ttest_wins = {}
for row in rows:
run_id = row["run_id"]
utest_wins[run_id] = 0
ttest_wins[run_id] = 0
with open(output_csv_path, 'w', newline='') as csvfile:
column_names = [
'model_name', 'run_id_1', 'experiment_1', 'top1_match_rate_1', 'run_id_2', 'experiment_2',
'top1_match_rate_2', 'U_statistic', 'U_pvalue', "T_statistic", "T_pvalue"
]
writer = csv.DictWriter(csvfile, fieldnames=column_names)
writer.writeheader()
required_match_columns = ["model_name", "test_cases", "runs"]
num_results = len(rows)
for i in range(num_results - 1):
result1 = rows[i]
for j in range(i + 1, num_results, 1):
result2 = rows[j]
all_matched = True
for column in required_match_columns:
if (result1[column] != result2[column]):
all_matched = False
break
if not all_matched:
continue
if isinstance(result1["top1_match_rate_per_run"], str):
import json
a = json.loads(result1["top1_match_rate_per_run"])
b = json.loads(result2["top1_match_rate_per_run"])
else:
a = result1["top1_match_rate_per_run"]
b = result2["top1_match_rate_per_run"]
try:
utest_statistic, utest_pvalue = scipy.stats.mannwhitneyu(
a, b, use_continuity=True, alternative="two-sided"
) #TODO: shall we use one-sided: less or greater according to "top1_match_rate"
except ValueError: #ValueError: All numbers are identical in mannwhitneyu
utest_statistic = None
utest_pvalue = None
ttest_statistic, ttest_pvalue = scipy.stats.ttest_ind(a, b, axis=None, equal_var=True)
if utest_pvalue < 0.05:
if float(result1["top1_match_rate"]) > float(result2["top1_match_rate"]):
utest_wins[result1["run_id"]] += 1
else:
utest_wins[result2["run_id"]] += 1
if ttest_pvalue < 0.05:
if float(result1["top1_match_rate"]) > float(result2["top1_match_rate"]):
ttest_wins[result1["run_id"]] += 1
else:
ttest_wins[result2["run_id"]] += 1
row = {
'model_name': result1["model_name"],
'run_id_1': result1["run_id"],
'experiment_1': result1["experiment"],
'top1_match_rate_1': float(result1["top1_match_rate"]),
"run_id_2": result2["run_id"],
"experiment_2": result2["experiment"],
'top1_match_rate_2': float(result2["top1_match_rate"]),
'U_statistic': utest_statistic,
'U_pvalue': utest_pvalue,
'T_statistic': ttest_statistic,
'T_pvalue': ttest_pvalue
}
writer.writerow(row)
logger.info(f"U-Test and T-Test results are output to {output_csv_path}")
print_wins(utest_wins, rows, "U-Test")
print_wins(ttest_wins, rows, "T-Test")
def get_last_matmul_node_name(raw_onnx_model: str):
model = onnx.load(raw_onnx_model)
onnx_model = OnnxModel(model)
output_name_to_node = onnx_model.output_name_to_node()
assert model.graph.output[0].name in output_name_to_node
node = output_name_to_node[model.graph.output[0].name]
if node.op_type == "MatMul":
logger.info(f"Found last MatMul node for logits: {node.name}")
return node.name
logger.warning(f"Failed to find MatMul node for logits. Found {node.op_type} of node {node.name}")
return None
def get_mixed_precision_parameters(args, last_matmul_node_name, op_block_list):
model = args.model_name_or_path
parameters = f"-m {model} -o --use_gpu -p fp16".split()
if args.use_external_data_format:
parameters.append("--use_external_data_format")
parameters += ["--io_block_list", "logits", "--node_block_list", last_matmul_node_name]
if op_block_list:
parameters.extend(["--op_block_list"] + op_block_list)
return parameters
def run_candidate(task: ParityTask, args, last_matmul_node_name, op_block_list=["FastGelu", "LayerNormalization"]):
parameters = get_mixed_precision_parameters(args, last_matmul_node_name, op_block_list)
op_block_list_str = ','.join(sorted(op_block_list))
name_suffix = " (Half2 Disabled)" if os.getenv('ORT_CUDA_GEMM_OPTIONS') == "4" else ""
if op_block_list:
name = f"Mixed precision baseline + {op_block_list_str} in FP32{name_suffix}"
else:
name = f"Mixed precision baseline (logits output and last MatMul node {last_matmul_node_name} in FP32){name_suffix}"
task.run(parameters, name)
def get_baselines(args):
model = args.model_name_or_path
fp32_baseline = f"-m {model} -o -p fp32".split()
if args.use_gpu:
fp32_baseline.append("--use_gpu")
if args.use_external_data_format:
fp32_baseline.append("--use_external_data_format")
fp16_baseline = f"-m {model} -o --use_gpu -p fp16".split()
if args.use_external_data_format:
fp16_baseline.append("--use_external_data_format")
return fp32_baseline, fp16_baseline
def get_all_operators():
"""All operators in the optimized model"""
return "Attention Gather Add LayerNormalization FastGelu MatMul".split()
def run_tuning_step0(task, fp16_baseline):
"""Step 0 is to check which operator in FP16 causes most loss"""
fp32_logits = ["--io_block_list", "logits"]
task.run(fp16_baseline + fp32_logits, "FP16 except logits")
fp32_io = ["--keep_io_types"]
task.run(fp16_baseline + fp32_io, "Graph I/O FP32, Other FP16")
op_list = get_all_operators()
#task.run(fp16_baseline + fp32_io + ["--op_block_list"] + [o for o in op_list], "Everthing in FP32")
# Only weights in FP16
task.run(fp16_baseline + fp32_io + ["--op_block_list"] + [o for o in op_list] + ['--force_fp16_initializers'],
"FP32 except weights in FP16")
for op in op_list:
op_block_list = ["--op_block_list"] + [o for o in op_list if o != op]
task.run(fp16_baseline + fp32_io + op_block_list, f"FP32 except {op} in FP16")
def run_tuning_step1(task, mixed_precision_baseline):
"""Step 1 is to figure out which operator in FP32 could benefit most"""
for op in get_all_operators():
op_block_list = ["--op_block_list", op]
task.run(mixed_precision_baseline + op_block_list, f"Mixed precision baseline + {op} in FP32")
def run_tuning_step2(task, mixed_precision_baseline):
"""Assumed that you have run step 1 to figure out that Logits FP32 and Add FP32 is important,
Step 2 is to figure out a combination of two operators (one is Add from step one) to get better result
"""
for op in get_all_operators():
if op not in ['Add']:
op_block_list = ["--op_block_list", 'Add', op]
task.run(mixed_precision_baseline + op_block_list, f"Mixed precision baseline + Add,{op} in FP32")
def run_parity_disable_half2(task: ParityTask, args):
onnx_model_paths = Gpt2Helper.get_onnx_paths('onnx_models',
args.model_name_or_path,
new_folder=args.use_external_data_format,
remove_existing=[])
last_matmul_node_name = get_last_matmul_node_name(onnx_model_paths["raw"])
run_candidate(task, args, last_matmul_node_name, op_block_list=[])
run_candidate(task, args, last_matmul_node_name, op_block_list=["Add"])
run_candidate(task, args, last_matmul_node_name, op_block_list=["LayerNormalization", "Add"])
def run_parity(task: ParityTask, args):
onnx_model_paths = Gpt2Helper.get_onnx_paths('onnx_models',
args.model_name_or_path,
new_folder=args.use_external_data_format,
remove_existing=[])
fp32_baseline, fp16_baseline = get_baselines(args)
task.run(fp32_baseline, "FP32 baseline")
# The following tests for fp16 requires GPU
if not args.use_gpu:
logger.info("skip mixed precision since --use_gpu is not specified")
return
task.run(fp16_baseline, "FP16 baseline")
last_matmul_node_name = get_last_matmul_node_name(onnx_model_paths["raw"])
# Mixed precision baseline
run_candidate(task, args, last_matmul_node_name, op_block_list=[])
# Result from tuning step 1
run_candidate(task, args, last_matmul_node_name, op_block_list=["Add"])
if args.all:
run_tuning_step0(task, fp16_baseline)
mixed_precision_baseline = get_mixed_precision_parameters(args, last_matmul_node_name, op_block_list=[])
run_tuning_step1(task, mixed_precision_baseline)
run_tuning_step2(task, mixed_precision_baseline)
else:
run_candidate(task, args, last_matmul_node_name, op_block_list=["LayerNormalization", "Add"])
run_candidate(task, args, last_matmul_node_name, op_block_list=["FastGelu", "Add"])
# Run a few good candidates
run_candidate(task, args, last_matmul_node_name, op_block_list=["FastGelu", "LayerNormalization", "Add"])
run_candidate(task, args, last_matmul_node_name, op_block_list=["FastGelu", "LayerNormalization", "Add", "Gather"])
run_candidate(task, args, last_matmul_node_name, \
op_block_list=["FastGelu", "LayerNormalization", "Add", "Gather", "MatMul"])
if __name__ == '__main__':
args = parse_arguments()
setup_logger(args.verbose)
if args.test_cases < 100 or args.runs < 20 or args.test_cases * args.runs < 10000:
logger.warning(
"Not enough test cases or runs to get stable results or test significance. Recommend test_cases >= 100, runs >= 20, test_cases * runs >= 10000."
)
task = ParityTask(args.test_cases, args.runs, args.csv)
if not args.skip_test:
if (os.getenv('ORT_CUDA_GEMM_OPTIONS') == "4" and args.use_gpu):
assert torch.cuda.get_device_capability(
)[0] >= 7, "half2 kernel is not avaiable in current GPU device. Please set environment variable ORT_CUDA_GEMM_OPTIONS=0 or use supported GPU like V100 or T4"
run_parity_disable_half2(task, args)
else:
run_parity(task, args)
try:
rows = load_results_from_csv(task.csv_path)
except:
logger.exception(f"Failed to load csv {task.csv_path}")
rows = task.results
logger.info("Start running significance tests...")
summary_csv = task.csv_path.replace('.csv', ".stats.csv")
run_significance_test(rows, summary_csv)