-
Notifications
You must be signed in to change notification settings - Fork 23
/
DESCRIPTION
53 lines (53 loc) · 1.74 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Package: forecastML
Type: Package
Title: Time Series Forecasting with Machine Learning Methods
Version: 0.9.1
Author: Nickalus Redell
Maintainer: Nickalus Redell <nickalusredell@gmail.com>
Description: The purpose of 'forecastML' is to simplify the process of multi-step-ahead forecasting with standard machine learning algorithms. 'forecastML' supports lagged, dynamic, static, and grouping features for modeling single and grouped numeric or factor/sequence time series. In addition, simple wrapper functions are used to support model-building with most R packages. This approach to forecasting is inspired by Bergmeir, Hyndman, and Koo's (2018) paper "A note on the validity of cross-validation for evaluating autoregressive time series prediction" <doi:10.1016/j.csda.2017.11.003>.
License: MIT + file LICENSE
URL: https://github.com/nredell/forecastML/
Encoding: UTF-8
LazyData: true
Imports:
tidyr (>= 0.8.1),
rlang (>= 0.4.0),
magrittr (>= 1.5),
lubridate (>= 1.7.4),
ggplot2 (>= 3.1.0),
future.apply (>= 1.3.0),
methods,
purrr (>= 0.3.2),
data.table (>= 1.12.6),
dtplyr (>= 1.0.0),
tibble (>= 2.1.3)
RoxygenNote: 7.1.0
Collate:
'fill_gaps.R'
'create_windows.R'
'create_skeleton.R'
'combine_forecasts.R'
'lagged_df.R'
'return_error.R'
'return_hyper.R'
'train_model.R'
'reconcile_forecasts.R'
'calculate_intervals.R'
'data_seatbelts.R'
'data_buoy.R'
'data_buoy_gaps.R'
'zzz.R'
Depends:
R (>= 3.5.0),
dplyr (>= 0.8.3)
Suggests:
glmnet (>= 2.0.16),
DT (>= 0.5),
knitr (>= 1.22),
rmarkdown (>= 1.12.6),
xgboost (>= 0.82.1),
randomForest (>= 4.6.14),
testthat (>= 2.2.1),
covr (>= 3.3.1),
reticulate (>= 1.15)
VignetteBuilder: knitr