-
Notifications
You must be signed in to change notification settings - Fork 0
/
borel-instanton.nb
5601 lines (5526 loc) · 292 KB
/
borel-instanton.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 299289, 5593]
NotebookOptionsPosition[ 293383, 5501]
NotebookOutlinePosition[ 293870, 5519]
CellTagsIndexPosition[ 293827, 5516]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"action", "=",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"x", "^", "2"}], "-",
RowBox[{"1", "/", "4"}]}], ")"}], "^", "2"}], " ", "-",
RowBox[{"x", "^", "3"}], "+",
RowBox[{"7", "/", "16"}]}]}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"action", ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "2"}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"N", "[",
RowBox[{"Integrate", "[",
RowBox[{
RowBox[{"Exp", "[",
RowBox[{"-", "action"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{"xsol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{
RowBox[{"D", "[",
RowBox[{"action", ",", "x"}], "]"}], "\[Equal]", "0"}], ",", "x"}],
"]"}]}]}], "Input",
CellChangeTimes->{{3.83636726320829*^9, 3.8363672785756903`*^9}, {
3.8363673806369743`*^9, 3.83636749063966*^9}, {3.836367698760783*^9,
3.8363677247203417`*^9}, {3.836367872809757*^9, 3.836367965485051*^9}, {
3.836368006604114*^9, 3.83636800963558*^9}, {3.836368172811214*^9,
3.836368261367157*^9}, {3.836368536245604*^9, 3.8363686076818953`*^9}, {
3.836368858600687*^9, 3.836368862423875*^9}, {3.836369270312871*^9,
3.83636927117054*^9}},
CellLabel->
"In[180]:=",ExpressionUUID->"6030e35b-c649-448e-bf09-c343e0a28cf4"],
Cell[BoxData[
RowBox[{
FractionBox["7", "16"], "-",
SuperscriptBox["x", "3"], "+",
SuperscriptBox[
RowBox[{"(",
RowBox[{
RowBox[{"-",
FractionBox["1", "4"]}], "+",
SuperscriptBox["x", "2"]}], ")"}], "2"]}]], "Output",
CellChangeTimes->{{3.836367265071842*^9, 3.836367278961177*^9},
3.836367382957738*^9, {3.8363674251801367`*^9, 3.836367491001822*^9},
3.8363676148773527`*^9, {3.836367709155527*^9, 3.836367725351221*^9},
3.8363678732439547`*^9, {3.836367905339079*^9, 3.836367965705743*^9},
3.836368010278187*^9, {3.836368181757608*^9, 3.8363682616362963`*^9}, {
3.836368559582209*^9, 3.836368607999229*^9}, 3.8363688640228367`*^9,
3.836369271491653*^9, 3.836392097290118*^9},
CellLabel->
"Out[180]=",ExpressionUUID->"f0b5ed1b-4301-4d3c-965f-8d0055476148"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13c8l08cAHAkhEpDJKJCIhIpCR9bJDPjp5JSQlYRGSFkJBSSjMwUInuk
nJXsvcPztffehN/1D6/36+65e773fD6fuztxz0rzAQUZGZk1/vPv/y+DE8TO
zizqY70ftbOzA9wrIip2a7MoedLOymx8B3z8lQum5mZR3mV3zaHmHVD5YRPc
1T+LfuvYCO1O3IHmoxWKWWWzyKcnLHlDZQdIrWbpxt6ziPZiJNW3qG34q5z9
om7fLKLmnyQ7qLwFFy4pckawzaDGqDJH07oNuHFXSNaKcQbFtXipNuRvgK0f
2z3ZvTOoM+sxrXzCBuQQi9GTf6dR2CktVkOnDbjoE3NMvGca6ZJltGjxbsCl
rvWDveHTaI9g6Dyv3zqIOX0lZ2eeRsweyfJGemsghQ4QcQenUOVwpPct9hUo
P8LwkZxuCpn/zqCL3r8CVy333TbcNYUYsq83Te8sgxob3R+2pUk02ZW8J520
DAZOlB1hbZMoZs95v4q4ZXC+tFofEDaJxuhE8i6eWYb8bz1FjscnUfMbz5Ob
kktwLubzR03eCcR7dH9ry+sFuBCpltZxcgLVpenWX3ZbALGw1Z+3jk2gHEv5
88k2C6DwRrHXmH4C9e7mZk3WX4BbbqPHnGbG0eWF5kWuMwvgY3j6Q3zmOErv
/49tT+U8DHB8Dl4SG0eKMZJn/ts7D2OsavEOwuOI4dC1sxQU8zDNvJq5zTeO
6NY6F7JX5mCNQbGZhm0ccdicyL1EmoN95KMMbDtjyKAHvDOy5uBKP3eAfNkY
6qC5NvL41hyExCb6hF4bQzsBJ5oozWZBT5BL2UF2DPkJS4n91ZoFVhRPd+vK
GArS7ju5R3IWEnpiAk7wjSEh2lNSRgdnIZspIuQr7Ri6VyuvzPRjBlr9A2NK
q0YRpR1zvM2hGWB0fJY/oziKfM73SyY2TUE3zapDE4yi0GtF90SKpuDj+6dX
si+Nov4Dz551Jk8Bd86TIofToyhxV9xVfc8puDhnXk5JPYqSp4y4r4lOgY7x
3UaWihHkZZx2sSN+EkI1lccU5EaQprqHkpzvBBTt61HKFh9BdXbT6JbDBAxX
W6ScEBlB5MEkhZemE3BB9q3lX64RVPxp7g6V8gQ0C3cuZVCPoN8jpzN/003A
fkZjcraaYeSXpOsoGTQOPh0vWBY1hhF3p47w9+QxSA8+5GyoPIzu+scolUaO
QYfap946mWHk/8hduitgDLgrK2O+CA8jmommdGGbMSjP33/agHEY7f/13PeD
+BiQh0cJV3UOIVNS354TzaPgeKtAJfrOEHLkntjsox4Fw5QThma6Q2ipxJIq
dWMEFDZ8bUTUhtD6pcrzftMjcDBMP7xGcgidbzv+075lBJJbNkdX2YaQYi2z
MUPMCHQrS3qo9wyiIIEjtBfFR0DsclkB+X+DqHJBJ3CX2zBw+PDV1aoPIvdp
kZ/IdhioOoJJ768OIv9jJvGvTIeh2fY+tYDoINJ6GmKuojUMZum7tfWZBlHs
yKOfLqeHIfz01bnMtgHU9H2hKKR5CDYZ67jvaw4gH47s42LCQ3BvD/FKW3kA
qQY5Phk6MwTVf+dmFGQGkIHK6OcIjiEIHzycd0ZoAGWW2wQK7hsCsYxbirMH
BtB0nYLo4vggPFOZeujY1I/EBIyFWuIHYcWdLumNej8K12O1z+cYBAM7tr3u
V/vRXvH9hZPMg1Bheu6xjVQ/urvpl8B7YBBC1bUu6wj2I3YVS+ka8kEQOR5R
dYyhH1mVvQ0JHRwA2wLeicQGEio8qSF6PWkAFmaV+H6qklCy3KeOVfEBKGKw
OndZkYSc+Hz1Ni8OgO/5EOEcIKF78iOL1OcHgMOm70qqIAntNuq/Kc41ANdX
nqhEHSShzhvCxw/sGwCN9Ut/Nr4SSP1BRp9Rfz8UHey54/SjD13XP37bMaAf
tG9wm9ik9qGlvTE/gnz7YeqdtfWjj33oak2BUpZnPxw9uvvFTbc+BHU5DfRO
/WDLLhB3Ra4PxWVoF3OY9APvWbehzZpeNDSzd+yXbD+8l+c0df7Tg17fajNr
IeuH5K/H2s7V9CCrmZKZgL8kKDp0SHrwew8K9OGj1FojwUg/+VHl8B6U8W0T
Lc2S4IILUcn0Xw8y/DrtEUWQoDk3nCer/Q/Sk4t95VyM+7MFhRhX/EEvhYso
f/4gwYanLxlL7h/ErjvisbuABCe0nnW6vfuDxru+WqZlkMB6VttH9cYf9H4v
M+WdeBLs5TkwNt7UjbzWeZOEfUjAEUhzI6qkGw1ShprNeeL5V3aQekY3uvei
7XP2CxLcKp95n/emG4kILttoOZEg2bBW8aVaN2ojv288bkmCqx+8P3PUdSEn
nu2bVrok8KDdNtat7EQr5Hk2SfwkMKg9doijoBOxfgnctOAjgWjAZTSW1IlO
vug4KXqGBDMHnjI5+nWiseP2Ir2cJNA/OvU7UrUTUX5vyDJlJYEgTzfPQGsH
Mr5SYuRFTwK6idXW5F8dyPv2w9ZYWrweKYwvbHI70PKnOOdSGhJEnNPoogzr
QH57RPUP7SYB1aVK39M3OxDvNSqB4U0CeuRzJ8z725HmmxgG2X4C8qhbQ0Wa
2xHjJcZplj4CgqrmZbZL29F1+zGLv90EKF7njwhMaEfSUfG8Pa0EZN5IuJb5
sB2lyV8X3ltFgI9R0NfV6TY0VB3whTeLACOudL3ivjY08xHWQtMJkByto/Rt
aEPX0CNu+jQCFs323GbJaEOfOkymGZIIMHjitlfCtg11EhZN7tEEiLywtHTf
aEVfExxub/kTcPg1Ufh+shX153Gz//UjYCFUfU9qTyvyff0xleIVAWlfhRI6
ilqRUMQxytNeBPB0rnSd9WhFO3QvDWpcCKAafHhaxrYV7RKIu079nIDh6U5b
3Qet6IKAfrqyEwFxuwr3uyu2IvVVvYRRewJYz7nKd9C1IvLfpQccHhOwcXku
aOpvCzosVmkya0VAl9xdEvlMC7Iv1f9jbklAqL6s09nGFhSqajfq/IgABi/q
jBchLUiw5pvZ3AMCZt482w592YI6E7gtPt4noC5i/NpXuxZ0a1jygpYRAa8y
akba9VrQu0Hh4UZDAih7A1nPsuHnv6h9OnaLgIFRMjPpfS3oclNT9LY+ASUL
j/N0dprRwTq+PWP/EeBCc0PzRX8zognu3KrTJWBNmNmn/VMzqvE+qzCsRUC7
pG/bZGgzUvhxP2BDk4AcpY2T5D7NaEapbo4R+8mdnp98Zs2ouuV8t4E6AVOv
YhbdBJrRMr8ui+h1AqrfHZAOZW9GF7fI9j9XISApxj0ghaEZmVRoV/++RoBx
7v0z7QtNiJQb/MhSmQC5kja7ycEmpDTZJF6tRMCpWoVysrYmNCv8IIUPm9TP
c4cvrwmVrRlf2lEkoGjqw1epL03o/i9VqcfYUau0G9ofmhCXosvPMQUC9PdO
h7g5NSG70c7JUXkCRJkNBt6ZN6FfH2J9rLCPnGo4l3K7CWXxTFv/lSOgRTSj
ug2akC3JYZMLW8C0wSnxXBPqixfW/C6L1/vD9Fl79iZUPrUr+wb2cBVdn+L+
JhSjTX94WYYAqY0zgcw7jYi7xPZBBHYk71Wp8ZlGdFH/UYQi9qq+8XxBXyMa
C+ZMWpcmQNPPM+5VfSPyPvPnRQZ2WmGc1s2iRvTmeCOzFTbtVDHl2bRGlFuk
fFcI+wErkfM3qhH1RoWpbkoRUKyyZVzn34iOh+1trcJmfX6M+ePzRvSraddw
FLZ96uUqS4tGpJ73x9Yeu7lX1xFuNyKbrU07HWyBfXZ8DNcbEWNsU58Ytq9k
SA9JvBGpjjZEc2IPWWb6Z5xtRBa3rVMPYUtFN0q6szaixU6hTWrsiIaZWU36
RhRkH+VMjj29c1RGca0BiUSLc5FhJxjqJIx1NKClrbixXdj6JUFUr/Ia0IlX
pt/psQ+cbDDhe9+ArrifC2DBrnSnq6m1a0Ab5uG6/Niug4r8ljoNSOGoDq08
9kU5z8D9FxuQ+MfD4XexpxKK59MZG9DZmwEb7tjxu7e0NJfrUfjqC/akf/MZ
X85dbK1H4kbZf1uwGX4/ZX6XXY+22+Ze7sLr+ft0puPFkHq01UDz7RK2i89M
T4dNPXp9tPWRNbbIOC84aNUjgTLB9FTsKaWHsSzC9SiKa5f1LPZ/dKQHtxfq
UDmp4Lwb/r4M5qyV2011aFbL61gDdkWtHm9MRh2qzg5TP4nj5UJA08yAdR3K
CEgwb8OenNmr4aleh6qM8q+I4HiLU1PO4hKsQ+l9CtwfsPcfKLM3ma1FomHX
j1vgeJ0IziabsahFJZ9yVeVwvMcuzd0LvF6L6ztPWhm2njb/L0H+WlRgnVKt
cJWAX0cSfW2mahBv8Bl6PZw/MR/eH1w3q0E1VqKPPuH809losQ1XrkE0pZIW
0jg/995k6LjCW4Myvrs2kLAdWX0jXMarkZPLT68zqgRoRztyUppUI1+RP679
ON/Dc3ZRNypVI+EtTXI/DQL6al6PR/BVI0NGC85LuD6YrH1ME56tQvUsrbzv
cT1x1igTNbKrQjwGfqJPdXB87KK/XupZiTzn+U1icb1aeBj11C22Ag1c+hnq
ZEbAJRduPRWPCrTBcJF4iOujc8g3MeYHFegHX/lXbXNcn0tKdr7xVCClt3XZ
IriesrCM+BLffiHXnNu+VE8IkK4V+ChZVI6OCOt1DzoQ8EawuOJvdyni4+gt
18T1v+FtvDV8L0Whe3m3n+L9Yd+iF4v7h1LELND/+8NrAvxyrltS65Ui9t2D
gwMBBHiJ/WE82FaC7rOunXQMxu8jt3L/dEMx8mo+uJ4VSUB9uh5VgtdPdI3G
+wrDNwJUbNj1z8j/RC65T68J4f2sSmQkNW3XT3QndztTK4OA8u822gVuPxAL
j4tRCN7/CsoDEuodCxG98Zo8fT5en85ymXXLAjR3+QNlfTEBTmTnXVV1c1Cm
YtId/SYCaEbl9KiYcpDEuyPnNJoJCKnTO1/Uno0UN8SvKrQQ8DXcbZBfJxvt
3Hhyia8N798XGhX3amchFiWKM0Qn3l9NrRhqNTPQk0edJmMErtdqHuMeBzMQ
o1wyczEJx8fF96VXmtPRqeyZ4Hd4v7fahWxTNNJRqc2h+suDBMAVtkzG2DS0
m2nH0XiEAIqEm7LBkcmI5LTFqjyFv8djj2UK1mQ0dypsZQNbWDLl85OIJNTM
7ngqaZqA+50bdJrhX5DlZt9/WzM4XunDWxnCElHn232WnvM4nrpKvNyYElGK
acQR9gUCVhLHRedCPyFh3oTOXGxu6ctRDe8SkHpO3uveRXyeeNr5ICA4Dnkw
n5ilWsHxLkPGvH0wDjFHRkb5Yhfs56m2CIpF983V+Pes4nxKshe4/jYGRSR/
bd3GprCPJv1giEEGooF9tms4/30CuP7jiEaemkfTRrFDf/DPMB2PQpLvO9zL
1nF+6zzXXGWNRK8LbR3PbuD6Pleb234sAmXc8WMNwtbjMnd9d/QD8lcQk9fC
56djAckMhxjfIZ7bPhZf/+L9q/WOvQJXCJI4v0EsYRseY+xzEAlGJlxnJMW2
8Pf/4ppC0n6L1JhffinEVpi9cPCw8RsUusaRvIrd+Kh1PmAqANH/0HUX3Mbz
eSW9vsXvh4pdE2PDsCMPHdYvu+6LyHQ0+35jk2JcTvNaeqOnhcU9i9icAuNL
bwJeIs/Tv9+z7hBgWqhVuprmgU6lA60MdtrVokCDhheofc+ec/exh1I0vr8i
XFG6NxW5B7Z5Bbe2Hocz0jjG4fQRe5m0Oct19xmauiETlovtstn4ajHWFkkY
GWjVYFMdSeQqGbBGIYfMPvdgs91dcWNTNEP1TXcCJ7AFQmNy8yvvIZ0vklTL
/54Pfdf5OUQHcUvRUv/F9qT4st/hjiSqJFW/3sFeuEElmxosAVrW/kH/zMJn
MZx9VwcsbYwO/evvbEgvAd/ugdpeI9p/45nx3aNO4DeD7zuJT/7Nd3bzjwll
uzXsSlFV/Pc+CSSq+ovvbIF2n4tHNTZrxXlh0xvPQLri9skc7OCUW2ERh5zh
8/5j7JHYtG+9t+qaXaG2fNTWFVv6yn/nyapeQLXBxvE72H9TZ4w+fPEA9WV/
5ivY+RyeoUI+L+G95MCtQ9i2wUerah56g0ngldFR/D0Eqb5t3lf0heN/BjLz
saeeyQlsc/tBZBZX4Uvsz5Ndhu+p/OGWks6mKnagCcXg0L03IOFNYmjH8TB1
4rpzhuZbOJy03BOMrfznPaOLTBCEOlnVX8emUuW/ynQyBPhXxPbn4ni7T/2s
f/DAO7Cgt9C+j11aXOqYTh4KGd/K0/ZhuwjrpSr1v4dipU4f3X/n/6k4hSNN
YXA2/gPZCo5vscRpYqD4Awyo+jm8wV5h9jjoHBMBgUIStwtwftxorku5+iYS
YktOI0XsTD9meUa3KODXeM/QjPPJYjvVPu1ONFDPvbbuxvk3fNPZ5+fpGBhV
vmenhx2Sf6ItPjoG7kjc1G/G+bvw2NzSOjAW9NV9UwqWcXwOkcfusYoHn/Sg
TW2c/3aMko2H5+OBa7bdJgHXB0kFxx12mwSorbw3Oo3rSd3nhdsX7T+BtRRX
yuM5vF5mgyxGrp+BesDroDiuR9kR7MqW5F8gvJu++S6uV861Nx0cPL7AuA+P
kfskAXQCrR2B3klA51synDVOAO98eciPwBSYiZUlOobx+50gL/994Ct8PnT4
Y8sQAd81JRabg7/Cps1dqmpcL5WyczTG36dC/wESSsT11MQ+cd+RmG9Qc7Fe
lb0Xnz+3ZcsvdWZA6RObbBpcvy8yDdyUOJoJHN1H6r7ieh9+zm1RRj8TjP82
yl5rJOCe4Y+Tqj2ZIBEbeNm+Ds9fcuHFfVIWBGT9rnr1G5+vXnJJvh3LAZeB
xLTI7zjeosraQs/kQpx/SvgQ3l86c+5aRJrlQobor2juPFwvR6IiP0/lgl5P
+1AY3o8Erx7Z/DmXB89sL4yLfCVAjY46f2KtAFZM/zxQxftdaD6dWoTIdwjz
1l/4LxzX6wcMI9eefIfma6KchmEEWBYfPZw6+R22EI35rRACXj89a23VVwj2
jX9E8d0MKgkNnqWyn3Ch5oykiyM+P/nroASyIsiqqCkRekaArthNHW2JIog4
PPij/ykBIyH3PXNzi4A4EbvvHL5fUSrbk54lIWiky2vzekgAh75qrcvvYnjQ
yZjKg88b5emNTB3DxaCV/cXCA59XTKi1jM5RlkDZ+1jnTnw/+Zatu0FIlcDX
x3zOj/F5SXL/XR7p7yXwgs4BGUgQ+P5u47krtRT4Dmdrc3IT8EHgg7hPUDl4
Xz2Zo7LYBzJiJcWmWeXguLjmnjDbB1Py43LXWsuho2xQY3myD6RuX76+78gv
oFTvHH8x1Adjfl23Qz78gnCK4TKFtj4QHT/qGhNTAe+8imSf5/RBZ3x4SX5a
JZATnJOB1n3g/q1UPryhEhzv+M/uMu+Ds4UTVU5zlXChqzff+mEfuDWLNUsK
VcFXrcchFwz6gIf8z0B5ThX4nre5+uBaHzwzOEbZ9KMazijfdDfl7AOmo5EK
49W18L3v85vlxl74HsTmc36yFnKUlUw+1PTCLfroKge6OtA4bHb6YkUvxO3E
qtCq1MH1nZ7/9At74ezIZ02+ujoYm612u/6pF6SysgwsGuqhQkH6aZ99L+Qk
PihcM22EnMMpQklMvdAn9bzF2bIZTnuIXxiT7oGxOKZsv+fNMJ34mFnqSg8s
UGaGhL9uBt3O0a63F3qAumpEOz+5GdTSS1dPnu4BQQ31zsWRZjAaNMndpOsB
97unes3utABt6Ucan9Y/wOVeNaKn3gphonTSh+7+AfMyxo0LQu2QLZFjJ2HS
Des7FPY+Mu3QvpFX/+BON3iJzy3+0WwHml/aut463RCbUz3tbtMO401WlLly
3dD+2bW/MbsdOOVHGUs5ukH69Xil+aUOSFvyMn3f0QVHtH++TxDvhKMU7BXK
Ul1QPHJf5LBiN7Bc2C3tu90BanpsD+OP9IE1zxcO5Ydt4FBOfvLlOAmIwTBW
24hm4OdvZFGZG4CjVM83EorrYVu8Zd+j1iGQeBEWcy6wEoSizvuz9Y9AULLD
dfLFEpjr4e6/MjQGFxo3E2Sr8uC1p9H3n5Nj4MW/XyDhYx6cPhsTDItjQLPn
kvYx2zwwcDqqIEsxDuGtFVyq7HlQe5Q+RZljHAx46cyr7XLhs8687X+3xiHo
3s0UGd4cMGgspLFvHYdK16Y8g4RM2LBf61/7Mw7mWUrlw86Z8I5dpNBxcBzq
dR80+2hnQq1lmoXLwjjkoo6EU9SZILY3tvklwwR49c7tpD/KAEZlr8gQlQmY
oJXL1RBLh9oydcHM8gkwrNi63dibAkmdubrttRMQohBW7/cmBbymWV03WieA
nn3cI1Q2BaSYxutkhifgzbX6sIjkZMg2e/GoZfck8ETUOj12ToLIA5mJSwqT
8KwoWz3n3Gcwv3OI7VLVJPi0VDDOd8SBkq2D3M0m3N/0nq/ruzjg9iUeuXZN
AplSt6e5VhyQMlO+/x7H/ZvF99xvjIUbVHJ6erRT4Hb3BH1HfQyIp9oGO1yb
guKpKT/7H1FAt9m250fdFKRrzYyTvwsFzwGet9ptUyAYHypcIxgK21VOzLM9
uD3Pm1+77h3MhZ04fXJqChgi7V6n0byD9osWcj600zBnTOEa4BMMcU8oXW8o
YncJORWnvgFWfV2qGdVpUGc6u7Wu/QbeSSf7e+tMQ8w7Jftd24Hgw6Ae+f3B
NJDOfcrbTgwAy7SIAg7PaeDY02kbSv8aLk8ILU0VY8uQrdad9obMppdOXpX4
eTjp3RHkBWcLOik4GqfB8Ope+Q87L+G4j8sBLQKP961JRaXPEyi5qwUKtqbB
7b1qcWy6O7jsZcvV3D0DbidTZ6LOuMPqkpXEFD12QM8dw4QXMFHGqMLOOgMc
7bUcEO0GjXfvmr4Uw+3021l82s9BWSl77rjMDBQPaX2bNHKGMkHqZ/lK2D6+
X27YOUHuzlevST3szbHRc4kOEBm1Fq9hj5+PEeK2FrKDh12BfWzZuH2ln0yK
zBoMWC8zvi2cATIpIYGAKEvQuTNwjbIM+9OY2mEZC1AYvlAw0YR9ZmVXQqwZ
cM53BefNYuuZxQUVPgDWCx7VvKt4/KOcvSfe3YdD9mfJP27j9m1DU0M7I6DY
crH03DsLbg8N1ajV7wKJhlNJg28WyN4+eu5aog+d1+pcy4Ww0zd+HZ3Xg4YA
u9xLYtjrra/cBXWh6HDVqeNK2KTqmtU+LcjVfaL/Vh37mYEth6ompIUfe0up
hy3Kv6BWpw5RHJbbE8bYN9jnVlevQYgRk4iBJfZ9s9gzukrwOrH4UdNTbGYb
6G5XAM9x0zi559jmN89z28uB89lDXXme2LXXRs+IyoCt1Y/9fK+xz9p0k7NI
waPMBwofg7Er97K8uywO+qL5WZ5x2OrNtVJ0IqDpdHdiNQnb5+Xzuo7zoFRE
e+JRBraU04hUPT9IkWfr9uVjk6kcHXnCA6JytwM0irGLp223ok6BoDfVr/Lf
/9y2tRh9HHiqv21easB2ayiJOsgEHHv/E0pp/9cu19QXwgBM6hSmx/v+jVfD
Lq5GBfuCU6LfDv/rfyOR9tymJFX7jXbK6X/tesExB6Ykt5m36Z8t/fPxRzE/
WyVXbn6Wndz8Z3Vb+foESTs1Holv5HPYbiWTRpGSC3POnSa7/5lzwE+jWdIy
qMnm5J5/Pr1+nGtCckKYe38P/T/rNxbMrksatzkmv2PAdptrLXu/GwbsGuTV
DmNz7Kw+FGEAA2bOfhrmf/2Dw80KjkBXwTPn0mPYMerMrXrH4cbNOiZndmxS
maviq1PQ+PdElsgp7OLbh8rseEDlo53qLPe//ho6mgv8UAk14194sZ/RuuRs
nwe5fvaX9wSwfY5ZSquIQLG7LQerEHaY4Dr1gCiIc1YVtolgr/GekysWh7xf
bLqBl/+N9zcszEYKhB4+WbgqgW1Yw/IyRQbSaH77U0hj1+6W2k0jD4nXrMuf
Xv3Xf4b/0jllKI3v8nJTwe6c3J8heh2ITRklP3VsncVXwxfVgfkrY32MHvZx
2+3CVC24QOn6JuUWtoBhON8rbdC4NaaZa4jtyBqd56wLr+gLO2pMsAO+uDxO
uAmJ9znD282x86dzf3XdhrIf/rf6rbHH7XxLDhrCX3PD/pVn2M7TLLJu98Cq
bvfkCV9s/kXpB4MP4TWXVepZf+wk/d2leqbw5Xmn1aW32FfTU2K6zGCAP2VJ
5QO2EttL2m0LuBGgvm2fhE23mqxu+gSsRwqK3VOxrcYoAjVtwF/ylId/xhy4
eS3o5UjbQsXMMnV8ATbHf/F15+1AVC3iQH0V7v9Y6mXuf45w4zNla2cd9sG2
0KInTvB4xyJ0sAn315Jgan/rDMnfpI6td+H2zCgxxQEXYGMY4eScwDYZ/Ggw
8gLETNRGBWawtd6vPPBzB53i/KTLC3Mgxcc+5yPsAW+s/QTUNvB4NoW1fP6e
QNEkKOpIOw/FJx7a8hl7w/Ez4Rue++ZBqvUFmw6nD1x5setn4MF5XC9GPdOH
fcD2fLv0JxbcLpSUsv34FYy8dbrWyIu9ZaeumOEPNZoVBtzX5oG0t/zEPeMg
uHiYu2lSFZtyI/deRxDEtL2UzdCcBzfPx3SdSsFgpyfPI66P548pPcElHAIn
DcrnNUznwbC45a4xUyg8My31fO6N53eqYXp8OhwGeU+uyvjNQ4xDePOV9HBQ
nXphShOI+19x438tFgGnrKRVg0NxuxwnValWJNTbFjMlfcLzrdhwxYR9BC63
ouTWMjze+ZOMfrmx8Eb6OFv4bzz/hO2X29RxsEHhEninBrcz8cVt6sVB40sJ
24nmeVCX8V6M2I4DZ78fEmQD+Peez5B+rpUAzaHfG/nIFsCNtumTOOdncE3N
XXEXX8DxE83p/SAVXnHxvfkgtQCGVbtFh7tSITQq+ky63AKQ5mSPKKqlQZq/
z61elQWQeqa276jEN+ix0C+9dHsBYjQ/bXgGpYOowLb/1PMFmDu7rGgYnAkL
afJcOgiPTyEbrbSZC9vc34vMyxbAWntW3UQhD/ZEC+h5/F6A4gEGr8NBecAR
yOSX3rAAja/Ulo/w5YOq1fgcLQm3N+Qr1hsVQMo5/x+IbBEao5kP6s8Vwv30
Vq0zMosgaPGMS/ZHMRS9hagN+UUI04k/PjVaDMw2ySM1Sotw9Yjg7s5DJVAj
4uZgqbEIouvEZQfzEhAq5IvOMlwE0kpP9DBHKZBXuE9IuC6CW+ehx76hZfDx
j+ALzR+LEKN/t4optwLWfkRUnypeBHXTlw/MJypA8yPV4eUyPN6311s07L9h
992exPc1i1B5KP0Xi+9vMB/xru3pXgSTs8aXPhlWwpX5PqaH64vwJf9otQNb
NXRS+ac5XVyC4n0Ru+Qb6mCeMb7hstgSxNykeZhFVw+0XAVzqxJLoF6W9vfR
1XoQlx0WspVfgnwfBYMfpfUQ7SqRZ35jCUQ9KPT7vjeA8do0uv1kCaTcrbg/
9TTC0rhqEz58A80ndeOZ1WbYu35/YStjCSp3nSqcZWkBbhqnQz9yloCn5EY6
s2QL6HF/1hb9uQRkTQt1/Z4tUHhvp0uwdgnS2QcYtQ63gvufbwMnJvD7akwO
l4m1wYE6hqVd3MuQz009aJXYAdVBV8QP8S6D9bdvJ5abOsBTz9jzpMAyMPtf
PvB1qwPWBgsPS19cBp6RNMtv2p3Qt2Es4qKwDFITWUf203TBV56fdmvGyzCH
kmqV7LpBwdN0ferzMjA8Ck5+5NALZMoh0n9TsJvdU2+m4PvXfuRLl74MPjJG
NW69vcAfcZiFN38ZwooHK8xk+uBwJhJ7WLkM6ZdRRfE+AvoJRuf+MTwfVXNi
hR4JnK+UbredWYHij/DkIsMAeJoNrkTzr8BQDXtIDu8AvP5AOWt6fgXSS1du
X5cfgMhVBWJLdAXeNI4z/XYcgMKsGsR1dQWYKQ+YDY0MwAZfm9tT4xXwkc/J
bywbhGesYxSM8SuQ8F8qTembYXi6tZf6BusqTPX2J0c7jMPxQVluK45V6HxW
z2sWNQ4VlQ7yrzhXwfB5C5t2yTgwhwx7FJ9dhavWUhGv90zAd96fZPwSq5Ag
fvizR8QEPqeZb+w2WAWG87uSon9NwqvM6um86FXgoei6tCU0AzEPvVuPnVqD
UKcdyaHv80DjZFJz6vQauN86ppvWOA/WAUqlfHxrIJC0veU7Mg+QQ5d+RXgN
groYmOwOLkAfxRu/m7JrUO1lpXby0QKwfgyTiTBag74rvolN7DjPWpPSWRLW
QH+EPKU0dAnXp9rXR7nWQShLjTrpxyooFMUL9/CsA0WvUvv1tlX4K+bU/fHs
OvC8C/+0a2YVTC7w8nBeWIeYvtg7cexrIHXap0xAdh24c0Q3vnqswRy93Ibs
3XUw8BwJ+au6DmqdhQ8to9ZhSOjnWtbCBuyzSpHBV1YQtFQ68tdqG4rk8n/m
smxC9yg3y0mPXVJbFncu6uz7C/pfOjreCdNIca0aCoj8+QvPvPLZTxbRS/0P
qtklig==
"]]},
Annotation[#, "Charting`Private`Tag$387026#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-1, 2}, {0., 3.5928385236919063`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.836367265071842*^9, 3.836367278961177*^9},
3.836367382957738*^9, {3.8363674251801367`*^9, 3.836367491001822*^9},
3.8363676148773527`*^9, {3.836367709155527*^9, 3.836367725351221*^9},
3.8363678732439547`*^9, {3.836367905339079*^9, 3.836367965705743*^9},
3.836368010278187*^9, {3.836368181757608*^9, 3.8363682616362963`*^9}, {
3.836368559582209*^9, 3.836368607999229*^9}, 3.8363688640228367`*^9,
3.836369271491653*^9, 3.83639209733853*^9},
CellLabel->
"Out[181]=",ExpressionUUID->"eeceac19-d79a-42ba-ac2a-694bc9933415"],
Cell[BoxData["1.6985656952959045`"], "Output",
CellChangeTimes->{{3.836367265071842*^9, 3.836367278961177*^9},
3.836367382957738*^9, {3.8363674251801367`*^9, 3.836367491001822*^9},
3.8363676148773527`*^9, {3.836367709155527*^9, 3.836367725351221*^9},
3.8363678732439547`*^9, {3.836367905339079*^9, 3.836367965705743*^9},
3.836368010278187*^9, {3.836368181757608*^9, 3.8363682616362963`*^9}, {
3.836368559582209*^9, 3.836368607999229*^9}, 3.8363688640228367`*^9,
3.836369271491653*^9, 3.836392099349955*^9},
CellLabel->
"Out[182]=",ExpressionUUID->"a0b583aa-31cd-4729-be37-93153d4d9f33"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox["1", "4"]}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", "\[Rule]", "1"}], "}"}]}], "}"}]], "Output",
CellChangeTimes->{{3.836367265071842*^9, 3.836367278961177*^9},
3.836367382957738*^9, {3.8363674251801367`*^9, 3.836367491001822*^9},
3.8363676148773527`*^9, {3.836367709155527*^9, 3.836367725351221*^9},
3.8363678732439547`*^9, {3.836367905339079*^9, 3.836367965705743*^9},
3.836368010278187*^9, {3.836368181757608*^9, 3.8363682616362963`*^9}, {
3.836368559582209*^9, 3.836368607999229*^9}, 3.8363688640228367`*^9,
3.836369271491653*^9, 3.8363920993515882`*^9},
CellLabel->
"Out[183]=",ExpressionUUID->"435963c4-0c90-40e9-a8a5-c0b5e9dae48f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"tmp", "=",
RowBox[{"xsol", "[",
RowBox[{"[", "i", "]"}], "]"}]}], ";", " ",
RowBox[{"Print", "[",
RowBox[{"Style", "[",
RowBox[{"tmp", ",", "Red"}], "]"}], "]"}], ";", "\[IndentingNewLine]",
RowBox[{"Print", "[",
RowBox[{"action", "/.", "tmp"}], "]"}], ";", " ",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"action", ",", "x"}], "]"}], "/.", "tmp"}], "]"}], ";", " ",
RowBox[{"Print", "[",
RowBox[{
RowBox[{"D", "[",
RowBox[{"action", ",",
RowBox[{"{",
RowBox[{"x", ",", "2"}], "}"}]}], "]"}], "/.", "tmp"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"i", ",", "3"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.836368526542243*^9, 3.836368531012617*^9}, {
3.836368668208193*^9, 3.836368681942041*^9}, {3.836368745165447*^9,
3.83636874609191*^9}, {3.836368776203888*^9, 3.83636879606691*^9}, {
3.8363688263380423`*^9, 3.836368988859524*^9}},
CellLabel->
"In[184]:=",ExpressionUUID->"42fbb885-edf1-4549-b02b-2b21ac5610bb"],
Cell[CellGroupData[{
Cell[BoxData[
StyleBox[
RowBox[{"{",
RowBox[{"x", "\[Rule]",
RowBox[{"-",
FractionBox["1", "4"]}]}], "}"}],
StripOnInput->False,
LineColor->RGBColor[1, 0, 0],
FrontFaceColor->RGBColor[1, 0, 0],
BackFaceColor->RGBColor[1, 0, 0],
GraphicsColor->RGBColor[1, 0, 0],
FontColor->RGBColor[1, 0, 0]]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099558218*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"81fb1968-983d-43da-8247-c5f3e1a87e38"],
Cell[BoxData[
FractionBox["125", "256"]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099559639*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"ae35786d-00bd-4c2a-a6ff-0aa563b71ea4"],
Cell[BoxData["0"], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.8363920995625887`*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"2d6536ec-6ade-4bf6-aeab-2e9ca1e119cd"],
Cell[BoxData[
FractionBox["5", "4"]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099563821*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"0118332e-6cf7-47f9-a5c8-f7859d760dee"],
Cell[BoxData[
StyleBox[
RowBox[{"{",
RowBox[{"x", "\[Rule]", "0"}], "}"}],
StripOnInput->False,
LineColor->RGBColor[1, 0, 0],
FrontFaceColor->RGBColor[1, 0, 0],
BackFaceColor->RGBColor[1, 0, 0],
GraphicsColor->RGBColor[1, 0, 0],
FontColor->RGBColor[1, 0, 0]]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099565297*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"4e511c55-e4dc-41d5-b0f5-08d851c568f1"],
Cell[BoxData[
FractionBox["1", "2"]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099566491*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"5e64adae-e7c4-4e8f-a6c1-8db55dbba215"],
Cell[BoxData["0"], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099567683*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"ccc6f05f-c864-4b04-8304-ceb9206d6916"],
Cell[BoxData[
RowBox[{"-", "1"}]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.8363920995688543`*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"e0b66ea9-e6f9-4982-ac92-f018ca92e8e8"],
Cell[BoxData[
StyleBox[
RowBox[{"{",
RowBox[{"x", "\[Rule]", "1"}], "}"}],
StripOnInput->False,
LineColor->RGBColor[1, 0, 0],
FrontFaceColor->RGBColor[1, 0, 0],
BackFaceColor->RGBColor[1, 0, 0],
GraphicsColor->RGBColor[1, 0, 0],
FontColor->RGBColor[1, 0, 0]]], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.8363920995700893`*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"72ad802e-c46e-4d95-b292-523a8eef19d2"],
Cell[BoxData["0"], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.8363920995712442`*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"3c292526-9840-4f5b-9fd5-b7b1c0e08df2"],
Cell[BoxData["0"], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.8363920995723753`*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"d4f8c9f7-e4c8-4e02-b437-7401d5262466"],
Cell[BoxData["5"], "Print",
CellChangeTimes->{{3.8363689674781847`*^9, 3.836368989266571*^9},
3.836392099573504*^9},
CellLabel->
"During evaluation of \
In[184]:=",ExpressionUUID->"f421e675-e281-4f3b-8005-493e0121ac79"]
}, Open ]]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"tsol", "=",
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"action", "\[Equal]", "t"}], ",", "x"}], "]"}]}], ";"}]], "Input",\
CellChangeTimes->{{3.836369170916606*^9, 3.836369177586442*^9}, {
3.836369604300106*^9, 3.836369610818173*^9}, 3.836371252970623*^9},
CellLabel->
"In[185]:=",ExpressionUUID->"6bf720ca-6136-4d8d-b8ed-84cc41e2d5c5"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"x1", "=",
RowBox[{"x", "/.",
RowBox[{"tsol", "[",
RowBox[{"[", "1", "]"}], "]"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[", "x1", "]"}], ",", " ",
RowBox[{"Im", "[", "x1", "]"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "0.48", ",", "0.6"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ds1", "=",
RowBox[{
RowBox[{"D", "[",
RowBox[{"action", ",", "x"}], "]"}], "/.",
RowBox[{"x", "\[Rule]", "x1"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Re", "[",
RowBox[{"1", "/", "ds1"}], "]"}], ",", " ",
RowBox[{"Im", "[",
RowBox[{"1", "/", "ds1"}], "]"}]}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "0.48", ",", "0.6"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Abs", "[",
RowBox[{"1", "/", "ds1"}], "]"}], "}"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "0.48", ",", "0.6"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.8363696777690363`*^9, 3.836369708846313*^9}, {
3.83636973935797*^9, 3.8363698485770893`*^9}, {3.836369890400062*^9,
3.83636989912146*^9}, {3.8363699357667093`*^9, 3.836369935957355*^9}, {
3.836370039746531*^9, 3.836370056528934*^9}, {3.836370092680141*^9,
3.836370093192876*^9}, {3.8363701406547213`*^9, 3.836370141206895*^9}, {
3.8363704096348753`*^9, 3.8363704172243423`*^9}, 3.836370486422802*^9, {
3.836370632247588*^9, 3.836370791418089*^9}, {3.836370865968171*^9,
3.836370921157229*^9}, {3.8363709557079763`*^9, 3.8363710985099277`*^9}, {
3.836371290575347*^9, 3.8363713733011703`*^9}, {3.836371546308792*^9,
3.8363716229052896`*^9}, {3.836371939262063*^9, 3.836371941780724*^9}, {
3.836372289295289*^9, 3.836372296247098*^9}, {3.836372326782275*^9,
3.8363723551019697`*^9}},
CellLabel->
"In[186]:=",ExpressionUUID->"5d2d34cc-3413-44da-8472-7b8bb0ddeb41"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwdz2tI02EYBfClibdEyxaZS9rULaRymhuW4aMZUhqJMSeSLG8FRXkp6SI4
NyXLUMMxrazsYmkW5iVBNy+PZupIo3eDqJT+7z5YFqUusrxLb344HH7fzhGm
ZR09Ycfj8cQs/1sZI56K7+BAuWRL1fub0dtgif3JrHibV5HrZ0arpKCh2MBB
RNi5LIWvGU87fMzoNDJXdMg8hWZU95aM+XVz8OLO/HipwIx18knTbB8HKXmu
t7I9zfhH1FZ7b5gDnTGjfJZnRv1iZNJ3joOZGvfKmVGCXUNBA+hE4UDRs7+L
hcy97x2TnSlcSHSQ12qZDZdj5phb86t/H9IQ7Hze907qSoGz5kxU5hM03ogf
fehGQc+vrpVcItiemDNdtIFC9AfZfNBZgq0TzV4HBRTUwy7RnJLZqkgeZz45
lB6Vm8D8aa5Gs5VCm0nW6Kwg2DIc4WfwoSCaedMfHE+wuYnsChBSuC6T/MiP
Jdh40Ra1TkzhUdsx3SwQfOoozSSBFLZFh2nPbyeovCl6cEpKoXxsR9SymKC9
hG+xC6IQoNqcVuxPUBW9IJMFU/Aom3pZJSLIv/J6+XYI2wP9uiYBwVcb2wN3
yyjoVAZJiDfB7McNqSPMZ67Ve3Z4ERzpLx9YkVPo0cRNdm8iWGiXVJa+h8LK
l5aKPg+CUl0sLjFnqpWmCHeCn4Xhvyr3UtifqItDN4Khkb4JpjAKtmztYaML
wa+EfzV1H/ubVdIrdyaoT3EyLDCrfSzaVkeC0wWTgp3hFJzqu77VryV41916
ZJC5bvBJqdCeYMx9i+Y4UAjdosqrXkOwqse2ak60ftX/AGPWQgk=
"]],
LineBox[CompressedData["
1:eJwV03841VccB3DU+mF+TXfIiCnKc5WpzSjrVKpZswolv2VL7rh+1FCR6EaR
6aZt2kR5pCIxlpS6+rD8zK/7/XHvDV2HMpmptURaYZ/9cZ7zvJ7nPOec5/P+
fD78OtozVEtDQ2Mvrv930Xr95IJ1lEyrAlsLj8hBsy/PrWE9JZ8aibYPsHJY
Fey5VIU2ndrxXK2Ug/CuWLcXbWE2i6lQycHKa97YCDqzcf5FnV45lEdKEwI3
UPK6udCJjMlB2Rb50yjaPre8vVKXgc76OyvG0VNL6wrc9BnQzortk7pSskZf
4appy8BNszAD242UjIl26XyxjgFDF/dY/02UDO/TNJ4XzkBd29rLL9Fl3M0q
7SQGft15rW/1Zkocpo8Pu6cxYOD+jkSE3nm99s3Vkwycmd9snoTuNr8Wb5zF
gM7CfGMJ+mxyzOdl6Ch/hwdZ6KET0+b6UgZaE4xc6j6npMLIJfhCBQNbrBvj
etA3faVmHtcZ6LIS+g6hVxqkNmdUMSAwdU3WcaPk9CGVWdwtBuK150f5otVX
cxID6hiQvB5YXIo+1uBsG9PCwKNI/sYtdPG83VnNrQwECGsuTaDvVknSB7oY
sND7NnLZFkokRtWVaaMMSA8vD55A7xhZOWI5zYDj5NW2DHdKUtUGJuctWRg8
kT9l9RXWd0Fji8qOhWzj0/Yy9OBvXYUNTiz4HbF3km2lxHPo8XEtdxb8H6yY
HEY7rY5PDN7GwqKBgX3P0FZzBVwLeto1aon2NkpmZJfyZR4seNX3Fx1Fn6oz
fbvMj4XwDwQ6l9Fi+7l8TQALpp4Hzx3YTknNoQU6yREsWMZuLvf0oKR0Sf1f
fyewYDDGjZh5Y71eBPqIWlhw7jhpEomuWaB8YdbBwvit3I4W9GTPmCiJZeHJ
6f0DYbsoSY6+3lTWy0K6Tfh0LNrAT3Ej4iELkeJHy1rRdsFO5nYDLNz5uGNj
hg/mJbwnnT3KQtx3pYU30EHfqBrSnrHQMybx2+pPib6mXnC8IQdFLx3uJ++m
5KlZUOCbHRyMZIfKNUIoEc19/9FCfw6O2c3RMES7B9lmjqA7a7jQxWjJXo2m
2gAOlFXmNu3oV7m5+4v3cOB80kpq8g0l1c17n898x4E96TbR3UPJapMWw3+O
cBA13u9cGUrJvrEzmbXZHDhNSEsehVPSY6rX9GcrB1s2ri/ZFkHJi6Kp2d6d
HCSKnvZGosU3uCppF75XMHfTIXSKwNtljpwDD2WaKh1dJ2ybvoIOr058x16M
+dUJcnapOMiPDwtJjKSkf81Bu+8HOZB5hU7VR1Fi3P2g2vEfDlJXVb1Micb/
h6Tknp/kIGHrm5yH6OP9F3baveVA69XahYIYSrizqRFe0xy0v3qavikO/0dy
Lv1kz4PQVxZTGk/Je/cyozvX8CDbGSF2PUAJ0/eZwcw6HkJefykqTqbk46Qh
v5CTPPjXqDu2pFDym9YZi4tSHi4Ktyob0bsDVgT/8gMPK5db5vShLbvVoaE/
8qAV8vKeQIL3j1Y1fXWeh/GJhhmtY5QsDli3tO0SDzZDkz86oFmfUYMNV3jQ
sz5uI0H77C0+er+EB+9aXS+rVEpkwoJCrpyHopY8i6NodcKec52VPAydfar0
zcD8V2Q5FKl4mMi2lggyMe+BgyWhgzyoM7I8LqLdBDOLjw3zkOT9xxxxFs7b
yITdtXEexI7STe/+QEmgxNHW2kIBer8eWXI4h5Lt/q6zPnRUQCCXlpuUR8na
NL/8tUEKeE0PxdVfoGRE822zbqwCelYKeg5cxvl0fv7scYEC7qvhE6MrlCxb
WK9uLFLAohqBLAh9K+2hb+ZlBbx62LsqGJ39Z9fmU+hFbmVud9HChvaO/mIF
yM3bbb4vxvNg2N1fpgDxCcOkn9GW//58anm5AkhgmNUgen9e4PCsCgU0maVH
6ZVQEhBy9Il2pQKMmj67XV5KiabDej2HegVUm5R4/F1Bye1BtVFHvwImapNT
Yu7g/M+5oDpsrgSX38Na8mTYfx/VyrWXKGFqWBOeoct9GjjeWgnnZsmj/e9i
f+e/W3N/uRL+A+zOeXI=
"]], LineBox[CompressedData["
1:eJwBcQGO/iFib1JlAgAAABYAAAACAAAAWT3Obpy/3z8EWAe7ujTWvxJN8H9O
y98/1rnPNMZy1r+NVPYjHszfP53+o7wTd9a/qOq846DM3z9GANxbyXnWv6Fm
ZmTpzN8/qqHd+0l71r94CWngF9HfP1ZM0+J4kda/egql4rzR3z/vRMx5wpTW
v34MHecG098/1/Ke806b1r+GEA3wmtXfPyv5KINNqNa/kgT+Fs3V3z+uhgdk
RqnWvxxFFHMG1t8/vVJhCWOq1r9ASYvoINffP2S8+rrcr9a/CiKUzlTY3z/I
vgOr1LXWv5UY7QHD2t8/mrv0UeTB1r9QKzXSqN3fPySwLU7Zz9a/rLV8rDPe
3z+QjMAYdtLWv7QorSUT5d8/mCH9sZDz1r842AxKYPTfP08Gf1FHOde/nLCM
Znv03z/+c6HWwjnXv3qTuCi29N8/sSY9i84617/xSC1ts/nfP+BThtCJUde/
f8PwgF//3z9aLmB7QWrXv4rLyiM=
"]], LineBox[CompressedData["
1:eJwV0GtI01EYx/GVypRMS8iMWSZImKTWojFjenSoeaEhQ2ySis65zGvqCsVM
sVxaKtjKS03FeUnncF1sqIwesNQ073Zx/1NwSCjT1UDFCyp2evHw8IHvq5+7
NFucsp/FYnnS+/9Pt95HUSyClBO8oc7sr+Ajd7Ra8yDo49sxFqdyHjrYtrZZ
fIIcVJL4PkcT4Dtz62WRBOl0nFqz0gRlVnZy/0SCNgOOWbh7Jjg8OLRak0d7
cUZTcCoDTtXmfcpygkp6jcK7cww0KMbD56klE+o/nM8MnLyqq/GqIGhcyAh6
vzDg45nhPkXtrQ8aXTAxEDG4HOjykCC1zLU5gDBQur5UrK0iKLg1OX3BzMBK
wu/dyUe0TzF/X7LBUBAyGuKuIihRV6vIZ2NgnemqyqOujza8sbHD4LCVetzl
MfWNUL6bPQYv1aIg6QlBFna8UOSEQTryq3C1jqCc2RGV+gSGGd+fW0cbCWrf
sk7Y5mEIPB9okFHzz1XdlfEx9PCe5r6k5tq1J0/4Yaj0Fy1HNBGUb1GJmwQY
QiMN34qaCWLPa1YEQgwDciUstBDE8359JfMyBs80UnhWQ9Bk9HvurAhDXeZF
fhF1fWjaB14UBoXi7wvnVtofDPHeE2PwKY3RhLcRpO+umK6UYNA0nirTd9A9
Y+1rnyVjONRSErRDLTCCaEeGobiN2Q17TtDU8JAxTo4hrrv61g9qLdrArtcx
jPUscn07CTJyDEm30zD4vRJaCqmt9aZNnI7BuX/92pEugtwefCpvyMJwzxjl
IaVWlrZLNrIxrIKW9FCr+ywoJofu9866cZs6rM310kAuhunhhNgwLUFrfsO7
vgoMKRH9B6TUBS0zF7g3MfwDJUVeQg==
"]], LineBox[CompressedData["
1:eJwVzntMU3cUB/BaHkWRgKF0IBuCDIow3ggylS86RKYTLcJmBltE5CGIgoqZ
b1iGaZC5DWed4GVYBbSU0v6GQsu0BCngY+KDjQp1u70XnRjQ4gCRKO76x8nJ
J+fkfI/Xlp1JmXwej7eSq3e991hPGb+BRmzWkIPEgUJZX9eaA5ydegZXFi2g
MNXvKejhbBnMWWDlRyF7cP81oZKGn3a9qDCUQhwTtEz1zmultXlxFGaeywLN
jTRCdujW2uZS2GWf7bRaTUM9M/fqcDMFUUvHmkrOBeopo0BPoW2LR+ko5zuO
NWThdQrWuj9fndDQMMp8XTc+pHAyJ46lCY3NsxZu/sWmGq0Gr8v7L9FoLxnw
b02pxpsjplSVjoY07q5P8ng1pOOSehcDdy84vqzKpQbF73WmlRi5/Ifu0SGB
ZzG6uqaifJRGwvQc1dA6OVwT15PFfDOsC9RNyWnn4HO81HLAxQyL4aZoXuJ5
1A/6NKX7c3PNwf/Of1oL+4x15UPLzYh99FNBUUAdAttXb7SRmBEStTH8Da8e
nf7KSkMmt98se3aYrsfy3lM8731m0GTFrpcXLyCgZPTxguNmbC/2tPI4dBH9
dqIWndwMITVdXbVKgcwbhtoXl8zw7LsSMTKtQM7pf4Q3bpixaZg+ptM2YJ28
WB7ztxmuGR27SZYSluJxN8mYGeM5vydcsm+EXf69eVa2DPq+Vn4+pm0E/0SU
X5IbA9db8aYlm1Qo7LLVxwYxOF9eeDj9rQod4V/tubWCQWfJ6bOlp5pwd+9R
58lkBgUJYad+FqqR0u0Wrt/GQGTx7lenq9EmiSj0OcQgIqkP0/VqyIZbgwMq
GDBK5nLmCzWCv3Ay3q5j8P6r3GpDtAaKmWfVjjou72aNzfB+DSp/i3r8/DY3
5x+R2bVrsF0u+CyfYeAkHLi++K0Gr7MUVdIJBlPnXL4ZWUrAi27J+2QOi6cV
BocDBwn+jVv7ZdUHLEKmhETaQpAgv6gd48w3bDN+30qgeCtwS/BgsaG360mF
lmCHrrN/nHMk70L3mTaCyeCYlERPzg15h5v0BLbuoRtmebM4c8H9/p1uAt8x
UXy2H4utMbPDrIwE0sSi2iuc4zMkNTYPCJ423LcWLmIxstP5lWCAQJX147V2
zuWpzrlzTQSRptkr5gewiDNmrBHSBKu6Xy/9I5CFyDFJ4PmEoO7D1CrvIBYR
Jwc8vIYJ7L7VTu/jvP0HodfCpwS3lu3V+gZz/1QqHnmPECST55HFISyYJfqd
vhaCy46Jsr84pxWFP/QdI3DNV058FMpi8tc9i8UvCEzibc0POHcsyqsTjxPE
lHY7h4SxmJ8t1osnCGoYn91HOX8cdLVDPEnAj/3unolzzkCYRvySYCvFhIaH
sxgalJaJpwj+B9kACtU=
"]]},
Annotation[#, "Charting`Private`Tag$392783#1"]& ],
TagBox[
{RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwdz31Q03UcB3BEPQTxMN30IBUmBGqOTWg6QPgocAXzZpkmR3AKofFQEggd
oQWIMtBSGBC4ThF08ZAjxhzMbeRnEqQiJ8TjBPt+eQ6UR4GYUF6/+uN973v9
935zPvniw5PmZmZm/kz+66Mi58lDdwkcTtzrWm/Q45vatgPjjC/HWJJ0lR77
XFIrJFoCw+ZHIjzkeoxZaTyh1xHYEB1ZlpmpxxTDxV6nXwj8EJRsWybWY+nu
iYcL9wn8/tKe1d+tw/mt6lvXHxPYHNVSpBzUok4atkzYTODCpd7IlR1aTDFb
c7yN8X4rWai4QYuryEk7iycEwur3hNfKtbhJtlEa10rAmOs3PnZCi/42Z1P8
Ogl4PPdMvzdwF/OX9gePEQIBIZ7jfu0abNDNqHIogZsbul6IDBqcTy6xFvYR
6FcssH0qNXjUZGaQ9BNYNnHKdlSiQdt5dHYaYv6kOJn8PTRYNOk9d2yMACsj
Tzclq8Xyfo/sjlnm//YrCZ6BNWgsHhs9O0cg2KtJLnavQcswma/jPIGzsqVA
/801GENM8/F/ETgz9Pnpnmk1cns1oTavCDRNSg/fKFCjqkOwQ/SaAO+lZ8jO
Z3ew7sGuRlxFoYCbVFh/QIV1hk6LUEsKHjlcsZ07Y22yyMS4KyG3PdBOhfrb
91v4qykI5waucUerUZd9qKdkDQUH3mqbuXPVqAmKnzq/joKgkG18qFBi7Qds
N4f1FJoqwkr3SRkHahPrGCuGo2rTv2TstWxxjkVBtC/aNdxbiWp76YpPN1KQ
O4gzm/OrUPWn0jZgE4WR6rkVqKxEVd+R0CHGRW61D+riGT81FaVtppDS7e3s
4FaJ1Y/3OWm3UHAWQZBFtQKVVa2uOzgUht8fYfeU3sbKpGk/a2dm/71n63pP
VaAiLl9Szvi9drWmeSvjaOEjfxcKg9zcrIauclSEpB38ZhsFp6rkuBKvcvwJ
1gZP7qBAgmRWowulWG7Bj23lUSjm2PIkrnI8Wri1OJpPYeiVHH5uuYXLXdht
5rsopF81Bo7F3sJj7y4KBG4U3ug2BdiX3UTrrvHIJ4wDmhy/64SbqDtJZZHu
FC4+nw1mdZUgO6PhH9k7FFifCXLiF4uxnqXhuQsocL72UTtmFWOcvCK8mfH0
x6yvzq8rxuZfrzS+3k3hYJoh6S1hEZ45fG6hcA+F1d1P37YSXEeXwYTtu4QU
lmcERwdsu4bp5sGXIzwoDJRx1rMnZMjPPYB/M87ZGdd+VX8V/+D4zHzvSeHH
Y7HDvDOFeKma78jzorDn9Is7Ts4FKNzv+NFDximPOMIBfT6OtLIzw/dS8D5S
YUzdnYf5Yau0i4wvdJoaZ65I0Xd68XmeNwWXyWeGocRsnEqd2MT1obC2jN8y
K/4Wr9n0HfyNcVBPk09UhARFN9rSjgOFJc4Wy9kVaVhwb/p/S3wvZc0w/hd6
sUM+
"]], LineBox[CompressedData["
1:eJwV1nk4VdsbB3BjSFGoJBHhGiqFSK1jKaIklFmUhEiGfqaoiCtDmcWNkgrJ
rBLFOipTMs+ZF0fHHHHMV/zW/WM/+/k8e/2x9/u+a3+XmI3rRTsWJiYmRK7/
7g4nef1fqGM4nPdrRd91HqlrqI0En8TwjI3RKrPXIspzjvK1OoWh4MWN2YXd
vYDGMdDNrIGha8eFlKuxdLQ5wmMgirg3dFuIoyoLVecIMLHVxFD5MLZnnZtH
tGXHvs/EPZIN7/12jIEvu3lO3D+NYcfn/qMNoYso3zhn4LgWhkGPMgakDBno
S1l6VRqxg9O2bzVH50HNmZAaSW0Mqw1/Onzd/AX5OiecSCDekcg3KbhlHKgo
FAvdPoNhirBSwQJvMJJI+jdljtiye+pEnvUYaJWZbnl0FkOxZBW6528mSnb7
6K+/dDA8LChS3uhEBxINbHZ9xO673KsepDJQb1fVddNzGOqUTH/TvDkLLso3
nSsjVvH7S9i45AtQXs6qC9PFcOKxDN1+cBb9DEn+I34eQ82ZIQO/8jEUsyta
HhGf1H8iulrOQW2GKW0UPbLepSb0yPAnMKXsGTdN/NpuqVZPmAbYBNtlFfUx
fB8hGr5rtAydMbFY2meA4fPxM61hhayURbquTAlx+I4otpmpeXDTlM3S8AKG
pyziU59sT0EG7AoRU8TgZWzqpBUdNLtvNBZfxLBeT6nmisAGsPLy2cJviCEy
L2nPv72MLAq59n8k3qhoMZbSZ6dyaq4ZXTDCULdf2ol3fRWJNKGYUWLbvOPR
ExE0ZHNt6OPfxhguHzufPrExDvq3v8zWMsEwcTrt8Lh3CXBXc7GMJZYKe8CU
49UHnnUkmmuaYigQrGKdovQBRRv8meogfub3buuBxWLg6Z796oMZhi/pYU1n
/P4FkYYvmy+Zk+/nq2RV/DQH2CxEL+taYLgQpuYVpkQDXQGX9ROIje9RNMpC
mlAPI9BC7xKG+NWrVresJcBoux06T9zwtuiLHWUElPeed3K0JN97SH5HeWMq
ChOWF1G0Iv188T3TKqMHQQ8LvlFiT1+TYrnIfhR0qVO94zKGhpk5cftT2oDb
om4d1xUyb8dpkftOL4FHAuBZN3GK5OT6aNAiSJs/UutvjWGLRHDiKmSAiRi7
ZqarGBZY1fUtGY+i17VZbxDx8WofBuvRCRR99UDQb+Jai70nFWqbUGT8/OMC
GwwZN+OfZx/oRFyeXIGC1zA0equGH8R2I3Hjjfwy4shLrB+/91UgcHSh39YW
w0ZYNSCiykY13jHJzW2HIevUeJQgPzP1kGH3VAvxTtU6EFPyAoV0dF43tcfw
53Uticn2EeQQMeHKdx1Dea1UaQveblASX16RShyQbNJ/iD6F3C8uRFxywNBe
y1bsoP0aOi2Ut/iF+NWusKHtk7Wo4fPPJ92OGJrwhZeK5YUj0Z1Jd8ANUs/Y
VFGqEw0cW4zKpBF/d/j94ec+GmBPUd131gnDAa9zOn0adHSj6A67/E0MH8OD
/1vJYqIGJdxS7CDOSe6svs/RiZK9rl+940zWixmlTzjMoiITqygxFwzzezRy
oy1nkaMMy95C4q9j/p2f5WggSCHsvbMrhne0LVO55LoRy5LabgE3DLMz4ov9
u2lgzw8l7RLid6JMyssW48Atg8HwuYWh9cvxzRXe9Ujvn32pm/6HYdE9vkN3
9v4LxjbaeX8QT51wiItvaQW8J2az1N0x5Loxp6q8jtFC4X5JTQ8MOXcu9ue5
1AMlHh/Z08Qj5wK2ZXbUgTiNtmga8UHuvx4lrLcA+o/hoklPDJsHbJWFG++B
N8s2z1W8MJzXS2CMr3Wg1zy5h095Y+h751jka+MxVFBxv4jpNoZDsiPPTh7q
AWbX5B8pE88JzWfo36Yjab0REUEfDGe0XwzIBkwAh0r6wxhiIQlFkbkfFSgz
puqPly+GdTtUczuXslBBV6zU3jtkPh/XTcBfncBdAJj1Ea+3Tpbxp1MR7Ylf
oONdDKMjRD/bLrJR7M2lh4/eI/1FRqmcctGguqNHrZW4YoTdRVOFgYRurXTq
+2EY8S8Xq9nFZHBmt8lxFn8MKceFYmxWmCk8M95wjFh9j/wLcXoV0uFX9te4
j2FXV4xaqUQniqjq6NoSgGHsiW8WBqLDgKfmDU8g8Q2dNg3mJETeXzPXPJDs
91r+2m872tCE70BPPvHs2hEvkSucVLYt8r66f2N4qzTFf6/yNEB57zhHiNub
cj9wJLBQ02qeiQYEkXrb2TnsqZtH4bRgZeEHGO7rfH/iwa5VJG5+jkk9GMM2
lwGReqMFEDo82JFD/HCnQ+Y7iQXQft5tRSkEw5uynCvefrPg1NWi3mBi9Z7p
0cerdPSOevJSL/G6aw6HdUUbuHdWeb4ylOzHhOi9M0qslHeVcZWLxD7Nx55a
vawHB1iYLQbDMEwwaR7r30sHxXVf2aIfkrySG+aVWV9D9Rpjn7c+wrDM/MZb
tYJVkBEh4/ObOC2bk3H21hxy233/7NVwkieCjaiziolipnjDeo24fjZRR415
AaifN/L+J4LU93pn2Ez3JsrN1q+ytpFkPutiuLOlGYgvQDq9gbjsdY7dJ/8F
dOBYnLxNFIbBlUd6xiXmgfynppEiYhvdV+GljXOgtnFk/Hk0hqtBotPZwr+A
WWiUIn8Mht6OF75tnShDT1lKd3UQ39WIqk1bZKYECacfcosl85nTnx+jOwdu
Kked5o7D0K4qTYCquwyMDHwsXxNHL+9yiZJlolBuXHM/+Zjk3dITg8mhBSAV
dP5hH/EeHb3VPml2Cs9zlZfe8WR/OD/faOfIB4vFYh/5EohV6vi/y22hDLRw
N+USD5gtWar5dAMV189vAv8h5wuxTUYept9RPvvg2jCxR21+88/uFVRa0r1Z
+wnJw/S79wLX59B91UJZoUQMj5Tcvnx+hQHWmTZx9xPrepkmqQwOAwPnUDOD
JNKvbdJ+BS5rKPJsT/32p2R/C31z/kipRVL19h9diNeWxprVHabA5lKtZLFn
GOpHdvDe1kgDc+2HCxHxmIYhF0/kEuiZFqozTcbwj6Wik2fkGijnZKfNEZ9L
W0PxzBsgS3xmOeI5mT/Jro/L/kMgDnTzyqSQehWOhx7MHwN3TSqkKokDCzMD
eri2UmzdcilXXpDnNAnrd1smQfGQ9lPulxhezv+bwyK0ESmlBTjFE6ttH/I9
RN9AwmVOgYdfkXnxOegqlViN2LuME+uIVfNk/CU52tD0LCywT8XQTUa5YJi6
hDq5Zb8xp2GYmmScZKC1iVomKTDwjHjWbF4hQXgaTabsrzFKx5C/0zT27g8m
SqT5GHcbcShKSkh0a0c9CgI93q/JPBwUEVcNawa2L1aVLTIwNJWaV4hA/WBB
zq70JrG2oVCwYeUv4NNVsfHuDYYuEvlhil0NqFo41IUnk9RLYmGgxnMZpaud
NjlLbFkZaxRcXotcZm0eX84ieRzXI+ERvp1yn/o0aoA4PFIwveAAK2VnNaUk
L5vk7fkLfRpSDHTjsFyDSQ6GGsbigttYfqOiY+DikVwM+WoinFnrCsFUbo7W
ILHcaEHvMO0HsHdlsOvnYfhjq+rCSt4fVNI9KLhEvGO7XprkvQbEVp9jlZqP
oWMA59fepRlgk1eqpl2AYV8D48MxYS5qkWDmhRlij6Pdo6zJTFQTJ4Fx+SKS
v/Tet4NlLFRAzTXPKCX5R+fc0NFsBZxWptu1EPm/8IZUW99loRg6C660oP/6
3ZQqvqcNdI57GjlRyflJK1j2VMgYEhVNVlglVrZRuzaZ8hOElOS7XSoj+ZHq
cSZ8IA78H7cNJow=
"]], LineBox[CompressedData["
1:eJwV1Hk4FGgcB3CVZIoaJWwxUUrRiqgmvePNta1KYrvUliL1lNRmC3miMaKa
lkoo3RfbRQgNvSPjyn0M4+YdMuMYxxjjyjH77h/v8z6f5z2e931+3/c18Ljg
6jVbSUnpNGn/926MivNPvmEoPCR61m0jRbYJ08qUHAzv6PqIQw0rUCxVop1C
fHakjCX7TYZ6AxuM3XhkvMWIEV3CR9aiAsasXOJig5a8Zgo3yvnz3nfEDXl3
nGwbFnDFmS88XfIwXJDsFTPKnkZWhpF+E8R3LH9YNhiPoNo/F+xJysdQbKlq
fzGNj8L1wy1oBRj+VA54+DykHEB5FfcbscmrfYUs6jhil9vlxhViaM7t44i1
J1DbFnOBzXcMpWlMCzWRFBUntrzOJ96gm3udXdQJwtXUJu8VYdhW3WRaGCpE
TX4T6lbFGFpe2xEAYmaQabtYv4PY1/M5pXtmDLF21VqwSzCsc7/g8lRtNtci
R65DL8Xw8Yh34ahVKbJfviVAQKwk+WJx9PYosM3jMVllGLZvjT0SvbME8eW3
rhmXk/X1MeyXqTKwxt0/ik98rL1Sb/PeOYzA4pPxgRXkPCctRswuzWNUWLhy
VlZieMrJJ4MRNQNWPoOlJcRNy8pCFa4LGG/zmT6xVRi+Ev5jXeU+jgIoZ4Ta
1RiGpi9X3HRVYQTOj+9AxFX3Vzzo27WQcb3V4yKdj6F+UJtsh24JClbT61Kp
wdC9REv1d98RwFR36/lAnEfnWdpPygFrYYxkby2GUd4eJtTNw+Amd/m7GuKS
c8d8el0bUThVXfpIgCFLmGy/LqsZ3NRwlME6DLVk75SzdCXgEVPwwKgew0ZP
atbq5DQQZbfj5z3ieGe4c27LcxSpOT1u2oBhwQ2F/a6DSowt70U6pcRW4se8
2IwqFKV1eTqgEcOBg8XDiRMyFK2dotBrwnAod9nay15K3Bid/ll5xHOkvBVf
lyzhnne6HebZjOFnRfbUv/wUkL5SdHlTC7kfj15TkN4DHi1/qZpKvPBczbK7
bHXG7lNKQ8PE3wooS7HKJDivmO3Y04phJG+RFstyEB1ZkxKS1UbyXxXUlmMo
ATYj7sgcY6jp4qvNo/ajN/rlSyTEHb+kVZReGgMJBhStu0IMU04urfN+wQdv
VzrobGrH0IG2X88gfxbDVrnnBZM4soiGPp3pAq8FshrLDgyf2rNag2njKGn1
BM3wB4ZJcQ/k1dNjSJrM/uZBHMYI3B000If6x9aO0jtJPa87zdcILUGcuRI+
l7iRfqbyrGE7GtynV68gli5end+p4IOMdT1GHBGG63Pl0XNWKDOcmQGmumIM
+70FFdZXckBymqrmILGBWRgvRLcaMerqOhK6MOSUV0+mf48E+bRGs93dpJ6c
tcMXnKNBjulSiyFiQzUbpsrxIpC7wWVTbA/Z/4Rfpt+hAZBnFrFlWy/J1zPd
7ILDIpBvXrxVSGyfULt+8eQ0KNw4F4RJMNx5Sp8r95eCskNxmVPENsE5iZSs
TtBKpwQJ+sj7+3XJj6s6g6j86nSlbj+GKuvDQnBzDVp/hx1kNEDqF7Ar/D51
HHRubN3PJbatv2setUqM+HQfR89BDLf7r8IzESJUOe47Xk48xg65pF7/AdVZ
iZwSpSTP7q5BkpQuUPtetFBpCMPUeGrScc94YCXvb4og9j0qPx7oPICawFHX
MeKWXrvM1L6fiP53q0eCDMOiOMrupNs8dKr77v25wxgmVHk8m0eVAyHUcBMT
5/iXdR3gSMDTbOHHCjmZX31lyjuyGHTa3DpqNoKhWrReSqZ/D+Ane5vMEPto
Tnz8I68UddvN8ggcxfCJy3eBe24PcHgzyTIYw7DvtNuObKd2QAVxyh+Jg010
TM96FaK4occXC8Yx9Hra3U1LaAQHOOU3pohvtLrF2Ea8RKtD+LlfJjDk0jYG
bM2oQdmcbUs9fmKYpmEXQVskBNHZEXZdxHKTDScuy5uR1wTXNGQSwzd0I2Oq
hhQlHLLbSZvC8NPhh9ZRbumAWXlaVkScSN2u6TiajdYENj2wnsbw/FdHPwfQ
C951Bjd3ExepflU8mRoEQLAn6NgMhn/5fF67Tf0RMv4Upq+pIP//Z/W3Gf2J
KDhbynQnzvGLSG3b1oT+AzqOjYQ=
"]], LineBox[CompressedData["
1:eJw913k4VV0bB+BDkSnzVCEkRCHzsBeHTIlIkiRJCGUIRVKdvKYkaSAhIUqi
NPmUvXSiopKkSUQnlaRJKkml733b68kfXPf1W3vtZ017XdQCozyD+Vks1sx/
f/33t7Ik3caDxbNh/fk5RBuwBzUk+IjZzXT+Ks50PzArjebbqih5ElxynQrP
rxUY/Zt3UZ0XnX/Y8RNzminL+7zhveCSs/Sx4YSBp2Dzh5SYuNTTOZOIX76n
4nRP3tsM5j2lnjrbtjT/9RXKIeQJLTmZeOwVLV8qXFkFNhigX/dYHLAXAD+n
Pb7fy9gHZmVR9fLh2/vAlQO0qjF/nK4g5I+oXUsKwhLAvLvUSKTh6ut/81za
N+uWl/QU4o4ndNPJQJfV4OEuSrdl3KYazKmhDr7cb/IdnPWN/smnq+soBPNx
mw6a2ax6AFw/St2hVsrzwAkDlKnvZ9F5wsRFn+ji+N18ieDhF5Rg7qxvN8Cs
43TUuYZ3MiKwfg1U192l/QHgkmc0+/3bxzXg1l90pUjKnXFw9GNaSlup2UmU
OOc1lehwof4gOOMb1R/oevo5uPYX5cJ5eUxPDMZ7hjp/JOnwVvDwBK3UILu3
FUxP0Cld1SlyU6Heu9S7r/aJgeAxAbRMpjfqzF9/oRoNNgX/BAf8pjUXT125
UBzGd43OXl/hkQfmcqlvGcjxBfjgKBVw/KGVgQTsh1GqtTli/jZw8mRs8FxA
65bE3/WiD08cUVKQhPkaps2vmeWEgzNe04923ZvUCPYYpOPc18dLScHzz2lp
OYG3QWB2L1XbXexfD+Y20e4l5p2i0jC+z9SH4E6H1eBrLJSlu+HSObDqY1rn
k8A8QRnYj2+p1rqjJSvALA4dkmQhWwNmv6UE7O6ns2TB76jyKRE/loJZPMru
jmDUCTC3neLtL+kfB88VxNt9LL0Xy8H699NKKg9uloI5bVTDiwj0FTwmin1P
TjnrLA/99VBjkaUaReDoD1SesVX+R3DrZ9p4/IHoAgVixVG680rkjjxwwii1
MVXo8xtwtzSWXFQWghShvknotCTVnQPOH6dcHz10ewkO/UkPFUZdNZtG7MVC
GWuETXaDWe2Ultaxyj7wUyF04x2lZDidOGkmDjr3aG8quGMK5k+InvQEHCON
SpBI/NwZMD4eZT2pfGgHeEQB9bYi//tg7iiVlP34nqYSsSwfnu610SERXC+O
66eJXroD7hBG3s/K56opw/j48Jdy65I4sIYoOhDeJdMK5lfBhgYx6TNUiDVl
ccdX0R+R4JJ7VGRDRWQTeLMaFttp0y83k1hsOq5yfLIsDPxMAy8Ui71Jg1n5
9OA9MSSpSlw+HaUdOl67FvxuKtJYxdb4H5g9TDepdx8SUYPz+oQKGIwV9Qdr
zEK/a6buOAtmXaCKY0+MTFYnlnxLURa2IT5gEUXUPdH95NTfXAYnXItz+w32
eEPLZ4pf9ZxFPCCNLrpXGh8H50/QXnJ2ld/BkqJopLtnhpsG1DtO55Rs2lsC
LnlF6YVITPoC9pHGF5xnvbWdDesriS11ze7vBbcKIe7URQ294K6pyHHY/5iu
JvEbddTWGbN7C7hoMva8mBbbAt6ggLoOFayU04L7YR5elXh6wVrwv+eh369J
9yw4TxKF2jyS+Q0WE8If1IZ+uGoT16nguMkTLwrA1/Xx+IBU2yB4VB5xbs6+
YDqHeLsyFqy2KEoBa0/GWdluKZ3gPfOQ9MY1G1R14Lwro/ylm7wiwaxoSsV0
F0WDVWegcsUjGiK6xCaaSOdHrZgP+J00ru299qUC/EEPm3K7nn4Gc2VwQ9m7
a7ZziReoIXYqq2YvMee9IbqxTja3F3IrK+zqor1Ndx7cN3NQ51wqeAsxx9MA
+Uh4uLX8zUfpvk9rTeT04Dxo46AH8cprwT9m46G63QJnwX0yOPrw0fcT4OR5
eHTr+Yeu+sTCBijJvwUXgCdPRvy2PRWD4I5BKmPWxz2mBqSew2ZYXHDS5hRi
1lJtfHBQ3r8TrNpFTbut46g6H/azKi6usdaLBLvIY40cT3kazPlGVcWETAgb
Ej8QRgbLEgeWg9kyqM4su72CmDNqgKnpZXWfIXflR00/LxbbGsH3QwE7P7uZ
thccLo/br/ZG9oIXqCOv8k/eusZwPnRQd5qAzRawlg4KCJum1QLm/qAHFs2T
kDMhPmGGNujZfgsEz+XHI5LLntWC01Vx/OfQlglizjQT/PNh0hlXU1g/HpVc
n3OoAJyhg4QKy3cMgo1lUfa2+nWmZrA/b9KyAW3uKeA2SVRgxzPrBGtoYNXZ
X2aqmkP7Mur4FCGhSHC+LPrHpHndZfBTQxywdnuLoAWpr94UU/sstJZawHpJ
4WlXvqQdBef8okbfnRl4C35hgDqnr3c0t4T7j4XOOGseTwHvMUVZm58L3ANL
G6Kw8qJgZStiAy3k2Ln8ehh4oz6exZKZXWcF82WEWXrtKfwUyS8Z4N6Vu14u
Bgco4Mu77O0LwbIKOO9/v4+9JuacQCj21eVJxojk1UrYQ2bzWg64wwTNtZ3f
3EbMkTTBwlHv1KdZk5xvLh4oOpEcDFZ1Qs23AvvPEnNMjVDJmLLdBNjSCm3T
fFLqYkPa88yxr9dBvkPg6bOxWbL7mhdgj9e0bK3IVX02Y/ZXBzzce101iZjV
r4/uiO7ktP61NKqyoHiytsSeVjht3TebNcQcng1am3vuaA0xd4YLYjdH/P4O
TrVDyp+0VzvakeczdfC4ysvG/eChOfix61GVZ+Az89GFRN/tuguIlZTxvkq5
vniwnRyKfNSBrhGzndjYZXLWEUl7+J6LIi1Dp19+4AdWaHIA/6qTYDwP8fZg
+is4WhnjhgQlOwc4j+Ko4I1RUjZ4zTwcr/Cxp5uY22GLvByqrLQc4fyx8fzY
4MJY8G0HJF6q+uMK+MF09La9x1fMicyXvSNu/Zl32YeYPeaBy3U8p1c4wfsQ
3ukzNfET2NcY+6e1PkHOxEmK2PLCPxaZxJzPzkih3/rwI8hrTPAXifEx9YUk
P8JG99BFn6iFsP/GqdPro+sbID/ORrsP6yoKucB+08OhLQPxXuAHFHb4Wvq4
hJiTaIfVZ60yew/eZ48mPBQPWSwi7Qu0Uc/2+6Op4Fo7/MEr50EXeI8BZum6
ndN1JR5kYxk+kZzt4HETrPn4RsQ98E87ZF7zzyINN+JOe7ToH/aceLCmLvJf
8UvwFljcEkfrX36ptJjUF8ZG/wjEN0UthvuZD+f1GJU0gW0tUeXZ4W1y7sR3
F+KG9JqVoeDD9qh9VbhFA1hRB/OMtBTEPeD7/IL+LPzySwAxZ7EXFuSVdJ4n
Zp9aghTrVtUKLiH5jGVYN2t69oolcB4/UdaBj9dXg7kK2MP84MLfYDMTtFZ8
iZanJ+zPGWjzy6kCFWDn+Tjj8q3+b+CrVqgwJ53rspS8L8QJnw6xLz5CzJLU
RFyKL2kY7OGH70s3rljgRZyN0MBgolkeMcfbGY01msm9gfyCHRLN/TJitYy4
eTlSWX+2I5uY07caG9hGnn4OeQeF7BR0s4y9iSsXoGXvX4elE3P3eKDQ5nKn
bsjXeeDEw2tmz1sO9TrjPVEqkzjgjRQqcejhdYLZ2vjcjPzG2T6wvlPx9U9e
RQngRda4q0Uq8Ta43gsNHWlfrrKCOGES/hW722Qj+IsclnRxlrkGfumP1VUF
Psn7Es8wxCajV9vDiLk13ti5bXs1DTlPCvmWWWVKrCSWn4sjEsbWBRJzzD0Q
Z/FFh4vgWge0XyNmlpAfzI8zrhjX41sJ7pqF6jve9tWATXzRreOVNGsVY973
YNybFFywlJjdG4iHPdUTjhOzmpww/5xny76DPZSR3O9CI1d/8nx6ENJ+6CN1
lJgVNh9bnpL7+ImYm74cue3sbLNfTfLfZjhg+d6qQ2AbexwzzzVjCOw5C6VO
Eg5BAXD/eCPOqE19JjH3oD9KfLNZpIuYIxOA4p7W+M1eQ9r7u+LIuy9PxxDz
ioNxaNMMPi4xJ3URDrzouXRqINy/c5Ff5a4KX/Anc+xdyP12AjzLAntkf1v4
lZj7wRO57NQrsltL8hSE7eOCP+wFr12IbdYVsXuJA7SCsaXv/f06QSSfsEXG
biKv4sH3DLEe29bsOjE71Q9pGyXskg4mebw1Vtc807OamJsfgJSmDcyrgXzL
GiQvpswZh9wyCEn9XtrpFMJYtW4jFhvJ1Mgl5ikFYcFXVzf3E3N8/TGra6xV
fx2x8SI0fkt/xjZi1aVB+AsOibgFefIC9KH2yBWFUPL+JavR4LEHUsHEnIy1
uD9PNOgc5KZ++Okuu7rfYA+EHiVtEXILg/2ugTuian0LiNnlIeh24Ovq15Ar
GaMby1R+G4eT8XUuQVznZUuSiTlai9Blq6xjd4nZRv74gl7zV6X1ZLwqYfi0
2rhTOHHAh2hUKTu/4H/E3IdeqGxK6LvJG0h7vzW4aLzY2pOY7bYc5b1/mHOU
WLU2AOfwxF68I5acvgln3l9gYhlB6p02H6feSExPJ+Y6e2HOpbNPHkA+byFO
rB7UVY8kvuyG447O3B5FzJuzHkfu9+6giVXtI1Bo6h51kSji0CAc+O8/4MuJ
A26HYr/1P26UQ24fhpf7G04bIebEx2HPJWHrbaIZ106KRq72JTiLmDXTHTua
PZboBpe5IbaOeKDWRuIqbWyp7HAhjpjtvhUbSyYJNkF+3wXrTTrvIxFDbLkI
a4++qfID7/PA6m9Uf50kDlCJwkpPl7t/g/xaApK/m11qH0vqXxKJpJquf94X
C/elIbJbNdH8ipg7FoJixkwPWsSR3D0clR2ICtpDXGu+DXXqVRo/J5YUjcb8
t3iTTTYx7niWgA2Dpz3MIOYMrMOBLM+Kp+BTXmh/YeYmg82k/+NhuMm02SEF
/MkOj9z7IddFzOE4YfUI4wHdeDI/O4KRp1BE3Q5iziUXnHysIu1+PNzPv6hz
1n3eWgmkHsmtqP+JvNZW4uidsVh6k/u3duLQ7p3YTjKjRX0L4+Gpm3DMKe6h
zcQsCU9U5vh93S3ikqQg3Pl8vrlKIuN8tZ2Yf1u4UAxxSWEoNlQ81nWdmJPl
jQLP91RO20o87I/3L5bdEkGcE70RN71xXXiVmO20Ao2kpE6TSyLvt/NH6qqN
b0KJuSvSsGfD6CWamCMSipO99TMlt5H2ud7o3Kd1vkHEw1c24f6sEp16Ysn0
OCyt/WRcdDtprxmD7Zqlbq8mNt+0B8X4uxSeh3x3Eir7nrx+yg6obxXqPNhg
tZLYGachfoMvomeIS4RikOHtuU/5OeR9pkk4MCS42puY9d4I7+crTqoiZsfG
o6aiR64TxPU9KWjETELZcyfZz2GRSP2+0/sKYp/HqcgzkoO/E3MNAnGy8KU9
bsnkfMvvwufKP60qJW57lYP7bXT0vhJzbmdi6Z7ACed/GFdyCrDd5sL2IuJ8
z0wUI/WgeJiY1XcAl1WLRdmnkHpNE1Gnk4NNPvGY/L/r/2KbxDvi/N5cbLi9
7plNKmOhukwcOO3jmQPErJJItP+CFuc1eLkHbnIP8LBKI+N9kIdGhvJV9xIr
3knF6mn3hvuJeW92Ik81kaum6Yy1+TNRMm23L5OYZ7ofnVu+dU0fcf6PDNw/
cn6+YQZjg6DNSDr7HV8aceX1bHQ4rm1hF3HRusNIdWX1Pp1dZH2vFKETtllP
koj9HA4gPe0NaneJk9QK8UVx1zC1TMatscmI+qp7NpZY1a8AN/eIfr9OXJu/
Fbs0vWUr7ib1DWXje5W3M8KJWUNGyGfvqQ6auEQvFz/btFtRIovx4oYyFOK3
PmANcdymHPzeblHleWLVZxwUN0d3WGAPY+OHFeiHhKi5DzElmYuTR4d2VBGP
OeYi4d5bLT+J2xTyUU5zlYR7NuPJxblYoSpzeSnxhPAFVJwTfvQzMeumF54d
7/LaYS+pp60YV6/S0c8nLvtQgY3sReKHiFmPVuPLOkONVA7jca8qbCt1S3Av
cYHYcdT67eTi58RBj3Oxe9+uPKN9jF2OVqNH18L6Uonjtp9Gq04t1Owi9hk5
il7umxOps5+xq1YOWp8gXJdErB1wEY34v/nVTmycWoa3ONx0UDvAWHZBBWLN
PbknlrimBaN06V0PrxOX2ZzE4t9DlRUPMt7Au4RznzkHhxPvDsNY6YZ2DU08
cf48OlYt9FU8l3H2gjNY58AgtYZ4Aa8end3SmnKeMcdenIvNAyrbBPKYfNGx
WnzFMUPWhzilPhc7zgv1qyL2ME3Dd2Scy38SO2+6gb3Gtd4tPsR4YOsJ3MOb
YlzKmFOazsWBLa+3fia5V3ctflPT0uyQz3hbTiOOPnhCNJ8xx/QGF31LTF86
RHJ7h5No+5p1hdRhxlL4f1jA2elFNnHSpUqUpael+5z4FF2PZeSmxBoVkO9P
RREq+DFwOZUxRzeiDan13+DvIrnSrBJc2XrcRaeQyZUO3kb6Z9L2JzFmRT47
j+tyQ7rbiYdmXUIoyVFdrYixZXQjvhaoGR7LmDNhfBW5LBQ8d50xm/87D93T
H/iucIScR80kzDZi1wUR52gcxqdNC2LOMmZbDD7BypZf9CYYc2XseTgLLX7r
Usz0f0KuBY2zK08cYsw98PABCrPnD3pZTOYn/znucvJTnX+UcbViPnZcVPd0
G/F81hC6sFjy8C1iT/vLaJZn+DKFEsaacly0f9k1qSDGqsen8jBrhUp7LWPO
g01cHOmXkPmLMXdP0Gfcu7rT0aWUqb/Q8Ct2XTt30qFSsn+CP6LLIWlXXjCW
LLo4jLTDeVsNypj+9N80o0MRlubbGLPfHuW3Ftx48MtNxtwlTk9RXNyHWvlj
TH92F6+i/njniLWMW50r+BqXbC2bU8uYLSHQhbnbf776yThg6hbBRr1k77KF
5X/cFSQt3FiUWuufx7j14w2BRtFdIjNeMC7HCxQaE7OCHutXMPUGNgzjwb2N
B5IYj7rN0Gr0PqDocZNxyZk56o3X82LE5I8z86VxVrLRuKCtNZAx79jv+Y1l
RzRTzzDmFLL6sGQpx/Yn46QD7fqNO8q7fzmf+ONAqSf6jR9OGF/OZezTHKHR
6Hcqe3M/4z6ahRpvnR401K/8z5xXIgFsa4tzdh+3MlZ/lezUWHmx6FTrH3N/
mTV5WstfGl0nd/I/80RZZsHWKbSHRuAfd1kqtHOsP1+p4p3+Y1bN+bJY68Dm
yUd+/LGjtHpHaWPHDf8VzlX/mlM8xv+ztTHY5ZJo4H+O9nLvWzrS+H/6guIs
"]], LineBox[CompressedData["
1:eJwVzn9Q03Ucx/ExEJZojORnpPFrKOCYCAgcyhuMxB8wQMFSNM8fCJ4SIYqB
aaAOF6CZi3Hi0dnQQdOopjAZh2/UwSaOX2N8mDpp3+83UTsR9ZArD6Vvf7zu
eY//Xn47CtbncDkczkp2/7e/ylDJvWwD16V91esG9Vhp7l57mHWkz0ZdzH09
/jPi62RgHYDfP8wf1WPug9LbbldskDjr3EM+o8ckOmx5M+vSeM7Yrmd6fDch
F1K/2sB6SldsfafH/c65/OTfbZAkClfKAgzoobm1to71iETz9OQiA7bvWCAZ
Z53c0RRVKjSgg3b4X9kfNvjG3c0rO9qANXlJjE1tg07LFjvndQa83uXXWtpi
g1Bh+teC/QZ8+601u1lrg/k/lkWloAGlkxmN7l02qLQ8jarNuoNlnrot5RYb
5K2savHd3oPjyRfOVo/bIL/qmIdo/130Eqepo7gUzPEskZcXGFFwWvLisDsF
hdoHNavSe7HxgeC37SEUmMLW3BiI6UPnnanVf62gIDP4wobTvH4UdiZvmJVB
wc8F0ukUYz/qQq7UdeVQUCaPfy5OGcAV/bWcgBIK7gUlHoxoGsDQ8vGxj09T
sMVjDe8L3iCO8Dw0WgUFTbV139XuHMScnq5Lr1ookAo1ru+3DmLeuT/denoo
SEvfZzLPMWGqokwRP0pB3EGrpyTbhC/KJr0zXlIQHVlkp1CakJdvcrV3pOFm
d+hJ+ykTcmXRi9Z709Cr3dgdGT+Ehd2OmBBGw0XV5snqyiG8FbH1gDGRBn7v
REPgwBAOFlfMm8qkwZjTqh39wIxZeu8I3EPDVNEPR5s2mbE9I7JQcISGMf5Q
QlqdGeVPr4tCz9JwadW2kCejZhR9xrf0KWmwJ/4zFt9hVL17/pOLlga7uHv8
kK3DWHc1emyijwbnQs7w+vph3KdwSsmnadBrilt8LMM4vVt1Xvqahvq7j+d2
8AlyYjV7P5nNwMwbU5tPKsHHSes2n5/PwKMjCQtLTxBcrfil7SXrzJgnmQUS
gqoZJ+/VCxioOdH91a4Kgl9qdSOTrLflRhSJpQSnRPFZYl8GpOVBDX7VBB19
wtPtAhgIil2i1skIBr30WJW7iIGTqTLFWwVBqfjgpQ7W47e86l80EPz78pCD
WzADAdyYCuYiwebdZ253sl4ckh54R0lwmfW9xA9DGYh9EndGpiL4qX46rlfI
gOPsxmCBmqAyMPt8QBgDGocoF8+rBHnH2t6UsPYLPMXwrhE0Li9uCxKx/zsb
P3/WQjBTPbGsbAkDr+beP6BuI9jqIpYT1tmtcwYbtAS98q+8XhzOgGq330c1
7QStC/dcu8c64dj00UMdBOMl+nlLljKgfGSQ590geIEWFFWwlvsfr9+EBLkJ
J0xW1nv9w2RrOwnuqqfDIyIYSKSNh+JuEvwPaSst3w==
"]]},
Annotation[#, "Charting`Private`Tag$392783#2"]& ], {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.48, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},