-
Notifications
You must be signed in to change notification settings - Fork 0
/
borel-instanton2.nb
16454 lines (16140 loc) · 805 KB
/
borel-instanton2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 824114, 16446]
NotebookOptionsPosition[ 800801, 16075]
NotebookOutlinePosition[ 801193, 16091]
CellTagsIndexPosition[ 801150, 16088]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
FormBox[
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "-", "1"}], ")"}], "2"], TraditionalForm]],
FormatType->
"TraditionalForm",ExpressionUUID->"f5f9c758-09da-4327-a5d2-0dad53293420"]], \
"Section",
CellChangeTimes->{{3.836884112534453*^9,
3.836884123526697*^9}},ExpressionUUID->"7b55a0ec-dbba-42c3-aa84-\
9d08844c4865"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SqrtBox["t"]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]}], "+",
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "-",
SqrtBox["t"]}]]}]}], ")"}]}], " ", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "1"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SqrtBox["t"]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]}], ")"}]}], " ", ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "1", ",", "3"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"%", ",", "%%", ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "3"}], "}"}]}], "}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.836388745077447*^9, 3.836388913999102*^9}, {
3.836388978521585*^9, 3.8363890004736013`*^9}, {3.8363890580042553`*^9,
3.836389060458694*^9}, {3.83638949084791*^9, 3.836389506286913*^9},
3.836389754598733*^9, {3.836389885642593*^9, 3.836389911897786*^9}},
CellLabel->
"In[141]:=",ExpressionUUID->"90d166a0-b9f0-43db-acea-82dcd7b13332"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJw92XdczP8fAPBr73UtRWhoKFQool5vQlEoRaRNQyk0SGlJQyk0lAaFhrS0
p/bQFpX23bWucXcZkequ3+f7z++vezwf9/7ce3ze79fr9X6ctN2tC/bMOByu
lwmH++9zsuHU8ODbd3AzeVqdV1sEXb6SXrD84x2EhL+YnBUTQbRRU+43khkw
GD7KtYNVBIVacdqb6GaAf4budNQPYVR87ZZkWVwGmB7sSuXpFkb8btohvpqZ
MCH3W+dmqDBqeThszu6XBdcPK1oymISRBVtUaXlGFmhHpeQe+IlHP8OQ4I2e
LKgdXtsWR8KjnVFZLZ07suFWZXdWZxMePUjwUn3emA0MtrsHecLxSD1XiH0b
Zw5QzqndOSWOR5/3tth0q+bAh/firc1ceGTz0bva/0oOOOuhX3YbQiiqbPI2
MScHeFa9qBtEIUSuzxvNPPsBardJpCblC6FXA6c/qsXmQqHwAOf2s0KIZzPI
Qm97AXyVjPtQmiKIEm+YWamcKoCdU10PX8UIIrlvKjZCbgWwKtCylhQuiHTe
D10brS2APvKlgW5PQVT5/kVp+d5COFFzLUfknCCimCzVGPQUgsCvAyUrLILo
YnZCpwdfERg8H/t44S8/SrF8aOggXQRRw2vXYY4fkfCu3ZcPFkFG5is1vSF+
dMvveK+2ZRHgN8SWM8v50eMLlH6OvCLYN9e9+/V9flS7cXwk2bAYhrrbNDWZ
+dEuYyq5KbIExA7hH5rL8SHJAD0tx/QSaN+nHS8oxocE89IiuctLgPWPZfU4
Bx9a4zTZa0wqAYP6bKOaRV7UV1/uMXGoFEJO+cKjEl7koxrEWJ0pBe3Bh+38
Z3hRj4CIyF5UDibbs0oKg3lQk7ar/ZeL5RDHSN87dY8HVbi0lnm6lEPqvsxk
+Zs86G2b95XqF+UwqzhVNGnKg7wDxl/pU8rhzcuVPDEFHiRDy1S6llQBfbr/
xLx7uNG9nsOQ+LsSBBWZs3YqciP+vaUznzmrQKEst3doOzd6F6X6ZH1bFdh0
UNSSRLnRF0OFYauTVSDH8ckQsXAj5U4Rj10vquDSh80IgUkuNNlGyyzSrIat
N0vMsxO5kF5DBn+3Tw2cdW1HIMyFJnZKlzKiayBCKi9Tk4cLeQamXFV9WwNb
gy/8PsTChdIhNju2swb8XMw4L/3iROu1gcfNt9WCgA3ZfvUrJyqounp3rrYW
1FrsWb+84ETiJUITTEx1kHB8YP8dGU5k8WTddFqsDjYMD2V/k+REb67PdLaq
1MGuFP4YJMyJVEQrKyMv14H6PC5SjZUTHb9rEy9aWAe2svoP7s5yII0Us8y4
ffXwTnplR2AuB7K1yrTMnqgHQ4M+SU0dDlRG0u3qPdoIxVf2xZV4saNB/aAf
UXqNoBWo/Yp2ix39yf8kZnihESh12hKqzuxI0/ewbbtjI4xIOR5vsGJHFcL7
/tTHNIKDrHyYrD47qjwhubOI3Ai8xr1HiFvZUU3mskdcXBNEUp5aC7SxoUbn
1K1XlpqhbOZW3pfdbKh43sXF6k8zjDoZ1T2UZ0PvnLSqr+Fa4KWe1T5NGTYU
4jBk7ibSAifjt0rmSLAhfTuhpOCjLfCN+1huOScb6r0SsiX/SQsEc/recJtj
RWP6rqIse1rh5PhGlWoWK1qR1xbIc20DzcKJR+f2sSId0vG2CO82eMrTf9dN
mRWFpuoHOAW3QeO4kuNzBVYkJmJKk33ZBrsu3ThI2MGKNJhcepOa26Dbhnd3
uiAr8h5NfBq+tR1oy8lxeT9Z0MbT3wLXP7fDe2QWOFLBgpj/fRDcuqsDjNNb
7kwbsiCNTZsyk/wu0Cxyd5ZKZkZdjw70tO7uhd8s1xp62ZjRjmeL/95T+yAt
Wnw9wocJLf6dnBhQ7Yej5BrGCW4m9G6huoM/+iuUdONWqtNwiF8qizY9/Q3Y
WQL/ierh0JMbpQ5pcoNw1N8l68nGJvxBH6adAoaA0zLv2wWPTfBUby4Ra/oO
fAXs8a9YN2Eyvznyi/QIkFczCxtTGdBHYV1SVxiBRdy8sFEKA+pVThrGqYxA
u5HxnYkkBqTltPCaaY5Ar66hBCOBAXaZrVFjhiNwi59Z9HQMA2ZT25/O3RuB
zTBVL74wBlCedMXSu0ew+RuXn73DgHXnb8lKPqOQ/dz8cIo+A0w1LJ/vDRiF
XwJbXvnoMSCXaTZ0/6NRaM5s67pyigFWiX/vaEePQqmHapjkCQY0tEjqG78Z
hXfByc4ZwICwnba/vTtG4YbDtnqCBgOEBymG7ZJjkDmZcmFpFwOUj3EwHKrH
4HnTA5mz7AwozPmg8L1+DCKc58302RhwQMTI+HTrGNhwBbqeYGXA0bnEd8pf
xiDmp/0hYGbAuajdBsuzY6BIrNUDBh3ch88m3sePw5pNtcyNP3SovBOn/uTG
OHwe7Qizm6ODzughC7rbOCS8TXW8P0uHxhPjIW6e49DHNC/9fIYOHeLyw0YB
41i+0t3VNEWHsdryANH4cYjyirRTI9ABxz3a9ap+HLZuPR2nMUwHvTfSjh/F
JyDjbk8bqZMOBxL55Vu3TYBg2hUjGcw7o9enR6QnQOSoZqxdBx3W7g/YsapM
wOFaH72ZdjrkGT+2MkMTkCUi6/irhQ7CTD8u0p0mIHfusYt6PR0mretPnK6a
APVnEoNapXToupjHYlU3ATpJlnefl9ChwiCp0b15ApxP9nSTi+kQo+mJUnom
YH11NP1lER1OCigepZEmYIcjjLEU0uHDp6f743kmwZffPmwthw73pKxliBaT
UJJVqnQ7nQ52RqqXxmwngeJc6kBIo8O5YKaIIYdJkBuzMjbGLD//9kf37Ulo
4nDbd/A1Hb6VkOurHk2C6+N6XrZUOqgaulvH5U6CZUCHTksiHcg+ISl6G5Pw
nqlnW9szOixcUnZKxxHgs+Ktn4aYbZaFmXewEADfue7x9SkdDGRnDkpyEoAe
+t6HFE0HmcdhqYJ4AhxXlIrnjKJDn2nXTfouAqxcEFrxfEwHlaWLPENnCfB9
SHF7z0NsPUwN6yKMCFD8k2nYBrNu7XEPHRMCbFn8YvE7iA7m0ftGMy4TIMZ3
f50U5seqXB88rxHAy0uYej+ADrOeNWfw9wlgu5xGMXuA7afxIkaLLwEyDQ8d
+OtLB/rJ90X3/QkQWmusm4BZRPyFJDGYAClvflcN+2D9Vd5aKIjG2rM5Czjd
p0MaXSbi7DsCHK7WOJ1zFxuvg4QOUxYBgpk/iV7CXN4j8LPkPQG0I0NymDH3
vN64sq2AAFbTnSpWXlh/xwaVFiux9fBixG73xMYf+vhzeC82n3TyYvMdbLzU
AL+j/QQowTcc8cN8x+yu2vI3Arj/6TDRwByueO2l2QgBeK3ujuXcpkNZx9Eb
8jME2DN31ij1FrbfBJY5m9cIoMeobMpypUN/bUTYaToBeo7sDbmNOebmLvbe
TQKgz1tWDmPGd5izjLASIWTMktBzE3NIC53GT4SRAp4ZHOb+/TYPvISIkCAf
L9nrgj1PWltbEyaCyWoRIxWzEFJdZZMggnxybb82ZsH1pJ9bZYlwfj0uJ8QZ
e7/vD95J30UEV9NTF69gfna5jyavSIQnU8X5ezALlLFR1PYQIdhvxPX7DTrw
37k9p6dJhK2aDCkNzLxzJ8c8DIjQru9ggHfCzks8wfzfWSLYXBuZXnakw5MT
vsP+RkQ4ye29pw8zz5vCwccXiSDeYNT1DDO35dYvr62JsGXJ/pgk5g6esvO7
7Ijg7iJ8keFAh4gqo56c60RI5VfdMoWZa0toZ+kNImiEjOXmY+b8utzS6UGE
FBthoXOY24MiTxjfJcIY/ky6JuZwVfmmQW8ifA8HojRmjuir9UQ/bH2in99e
tadD69E/Oo6BRFBYYKmfxhy6+Kx26SERPN7Y1H3BzH66tepvGBH4Ath78v5r
/9fmsF8E1n+Jw3jKf+0z18uZo7D+HSdTnmBmY1Ur5YshQszuMypumJuLOvfH
xhGh+ZnphjXmR7YORVsSiJAok/3gAmbWuuQC2RQizGlaRh/GPHL0hP7kKyLY
X4tV34O5oGqJkJROBKd9kpnS/z1/KP7+pXfY+ngwz4thNi/TxuOziPAJLNd5
MasemM3pfk+EK+NHxln+G39RtO7jXOz99xREr1/H4us+zbETBURY7eoQ+I35
Y96kJ66ICOndr2womEOVw/lqSojAStcOmsNs8V418145tj4NVXdImNUVhnX2
VxFBr1JBfQIzZ0bQELWGCDO1CY0jmCdkdt/OqSPCKEFK9jvm4rR+TodGbD1d
u00GMYdv902XbiGCF7nSdACzVYqs1ngbEQ4J/t31nw9IdvUndhChdiyx7T9z
JXq6mHZjDig+PPTf74tKsQr2EaHy+tUHw5hLYltSOvuJIKGW8XQMc4SQ28Gw
ASLsac7wIGC2eSrWc/w7Eaw13RVnMGvw1TkwRoggN7EjfwEzT6TjZuU4EVRO
NbP+wEzgFEz0IhDBQdNLZRVzWWiFqtoUEWRK9HfhsPV8wmr7eWmGCJL/TGmc
mO0ectllk4nw1K8wAo/5EK5o7doiEa7+uvN3G2Y+f/PYHVQisOgVHlTEXHH/
Q/OLX9h+ssEpHMMc/dfE8sIfIhTKHRs5h/ma18YK3z8izLZYWFva/3feziqE
MLDzKh8y+QDzNHWlDjGRoKS2cSQKc9XNV5c3WEhwjnQ0+zVmeyfaYw8uEuwQ
Mqhqwaw1myCzj5cE1r1Cm8OYBa+j6gV+EogF+4jRMNdYP1+yFSFBevPL2q3Y
+cCb7T9vtIMEnzJ/0/wxk7+NzvHIkGDpen7XS8y1Fx4FtsmRgFWR8KAUs9O5
gY86u0kQh7ZepmH+dPKeyJ6DJJB5y0W/iZ3nuKYdeWRNEtDak72jMd841n7y
nRYJ3ilHthdiFtGWuLcVkUC5d3XmL2aXA9XDXAYk0N1pLfkMiyf1fQO5FWdJ
8NH6o385ZlHX5QBHIxIIqacWTmKuy9gl33KRBNTkSj91LB4Jiz9zD7QhwYNn
5vVEzE7FOSf3XSPBxcmuOAEsntWeb9kyYU+ChaYeTR3MjuFrn464YPPNwi2k
Yq7+d53nrxcJDPZnMDv+Fy9fBExkeJOggSp5PhmzvXrSR1NfEnT/knPpwyzg
0mtWFIj1l/oAr43F42tjh9+5RpIgdPyP9E4sfvPU8WtPp5GgzaDejg+L/zZX
lQRj35KAINRYcQ5z6V/dqWOZJLAPjSY8w2ytev/x6w8kOO8ilSmO5Y/i9KkB
8zIS+B/X4tuH5ZerjyrcvnSSwD3IyzXEA6svTtulffpDgk13wdgv3tj5UZHW
gX8kaPZt0lLA8uEnfsJo3ToJhs94pPph7vtqKd6Am4LqWos4FSx//ra8Et3E
PQWDwc6GsVh+1XE3etC+fQq6oYT9kT/WPknncv+pKRjZnVbx6xEdrvjRVy6c
noIEXVke2xA6kKxrYr8aTEG6dLpUL+bfclq934ymAFeuFZwXSgeJgoOnhsyn
gDBTcNEjHDsvTSoHxtymIDg3R0f2CR1WFiUFZ19MQR53+HXROGy/pM61pbyc
AoUt1raZmPefLwkwScH6r5o4dSgey7dFZ2n16VPwWnG4y+oFHSjegT3JuVMw
aTbYWYbVPzNss0+MG6fg6qvx3hisPhrY8ZGrljIFJv/y+jay6OD5xa/BY3kK
Hls52X/IxvZL8Jn7u39NQbPl3UXz93Qwnp0iJ6xOwbh6ZVcNVq9154q1u7NM
Q+82maXIPDq0HH4QqigxDc+5F4hmWP1XaqLHEndiGkSEk4ey67D4ZlARsk1v
GjST0vydsHrSQleJM+P0NMxzfsQpNdCBeT8PX9m5afCf5k3IbcTqPXyv2PfL
0xC77b7IJ6weJfdd2r3NdRqO8F17zt1FB8lzDsbv4qehXcc/1QCrfwP0Q16X
zE4D6RPjSgBWb/dbOVmozk+DXePwIY+/dJDzMpDIXZyGSMswuuMqlk/ThWLf
Lk/DZY/iw6Zr2HlbTw2NWZuGjo4voZpY/Z6dV+Z6m38GnjMsGpSw+0AfnnxE
RWMGPOs+768TY4D0+Jnvb0NmIOWghWyTFgMiGo8UXAyfgcJE4im+owz4maUS
yhE5A47J3fGXtRnQ6M5/wOXZDIQoC1T8xO4j1zn7n6onz0BE7BepgycZkL3/
il5D4Qzo+m+h/DzPgL0RjmUTozNw/6T7x0sODNDSfBQnoT4LDc1a+cQXDBi0
k9BIPTAL3UM+VOtEBnhE5w/t1JyFnTphlyZfYvejme+SikdnQcXNKo2I3c+2
x+1J1zg1Cwa9L5V/v2EA84/BPBPzWbDPncg0LmBAZ45SW9TDWdh6Xiv0ZzsD
LLb3/mP6OguVTffqljcZwC/hXlo9MAuiLJw900yb0CAsesfr+yzYKvk4j7Bs
gjzXVTJ5fBbONk8ZdXBsAu3X7GAveRZKzivQagQ24eFnRnEqYxbUilbPU3ds
QrbnXrfDu+fA0GLta/ixTVjpiCLdDpoDJRPZwJHHmzDGM+C0ETwHEnz3xPBP
NqHRcBstLHQOruMFThlEb8Kznpz1V5FzIDV83KsxZhN297eJdMfPgYWrr1pz
8iZYDTPpKeXMwSCTurBY/ia0znl9IPbPgcIsyXD96yYkslp5XpAjA39FtE4Y
HocY18QPfpEnw/6cMZFvwjh0valv5bwSGcuvqgPSojik+lD33tm9ZChujhar
F8eh9k1FH/1DZCD7fs3nkMKhv2u/AnQMyVBSF9DdpIBDl348jtztSYYiNpX8
39o4JDxR+oa5mQxZB7XVrrniUDSvn195KxleiHv+ErqFQ9xHTly++ZkMLsLD
zI23cYg5sZ9vsIcMmnY1fPKeOPTTmOb9fpgM9t6Kv+k+ONTXonjeiEYGdnwH
NzUcu8/nJa+nSs5D0UQQbSgDh9j8gkwP35kHZ/nxzW3TOFTyY+lfncc8OFpH
SbDPYvNzuPz61N15mLHmSF+ew6Hm8/sWTHznIS4+lfF5EYceyYwHuIXMw87L
yRLRv3CItf3Qh7cv58Fm9fimBQsTYhZeZuJvnAeFkz/cd8gxIdx7qwISfgFS
F0b1opyZUOvSkNtr0QWAqFpJAVcm9ETVeK/FlgVIU64Vir3FhMQrdPMGpBag
cbPMK92TCe1tU/zQrrgA5buGr3z3Z0IWMz8z83UWgDfiZmNhLBOqlA575eO8
AO8r9npur2NC7kkFUfjGBbA1Ikk8k2JG5RtJYY3NC1A5GCXzZicz2rAKDXJv
W4CN9dZfZbLMKEzW0qu/awFWV1boZCVmlJLLbRkztACmVkdEb2kwo5ZP9ip4
ygIk3Sc8YjdiRlumtnYKbVmEM3K5oX4hzMjyJEdLg+QirJ+2/k0LZ0Zvsn5+
uiO1CIXZ+dn2T5iRys3PRV9kFkFgmvLHPJYZHVu5m/R8zyIo1N3Idk1nRs4c
/TeEdBfBpbP2tuYnZlSrHM4p5LYIf8eWtwSsMSONb+LdMbcXYXBSJ2kngxkV
Psh6LuKxCMUPqwNbmFjQm+5WyS3eixCn1fVUgosFhd9i27Pj4SKgVgmtRXEW
dKH4ofGeF4vA/eLtxiENFjSn5Zd0+tMizP9M2/fGiwXZTPFad9YvglR4FVfV
fRY0Epkie7ZpEUYPOi4P+LGgrrHqXKP2RRCUPr8uEcqCivzXPpn1L8JhXkrh
1xcs6EHjvSn72UXga3uJF65kQUJn3FUe8i+BWrP08WUcK0prEODRElqCjIc7
GtfYWJHq4bz5H8LY9y7jrDw8rOicIjnTVmIJeDfc146KsqIIdivpY3JLcCbs
cuOcEitibTothtNagqDzJeu2pqzozxFpnL/9EjzSTfM+lM+KQoo/TRx0WoKC
Yf4EwRJWJKJsUUtxXgJ1KcIirZIV7ZdM8LG8vQTXFm7dam5hRbdXeVeO+i6B
3M0W+9ZxVjRfsjq//mwJBIhXO7QE2NDYnr6v92uW4PM56d8m3mzo9aKQH0vd
EtS0MPtU+7Mhu/cm8lENS6Chq86rHMKG5uWGvNNal2CXSGqcTAwb+rN1Qqqt
bwmWPNX+eeayISHuJUeRmSVwm9lsLiWxoVOzHBv5fBSIuaN2ReESO+J6dzrj
kCAF4lKCnxZZsqMu28hzjXgKJIqZKOvbsyOTcf70AXEKVPxdpcR4siObb6Kn
NqQpMGiWrvg+lh35Nso+O61BAYGvFwooX9lR4SuQm7aiwGOXG3HPLTnQL59f
HLa2FOAQ3+7j6sCBNMyyFsevUSBBrSnn0i0OVC0gUDzkRIFxa/ObxkEcqDVw
4linOwUIaJZ1KYMDjdr5WReFUiCgKC7j6w8OxK5QnRSYT4GZSpm6e/Gc6DTL
LX96IQXwQc9adNM40ZNJGTufYgpYPW7gkPnAiYQSI5Q8Kyhg2KLDLtbAibZx
mVc4NlJg0yg+hEjhROqLqwPnBilAe7V986ABF7Is0BCSYlBACNiUA8W4UZn5
Kn8fjgpMccIWyru4ET97FW8wCxWC9tQ6reznRvUW2pzznFTwzTCtmTPmRjLc
JzZLhKkQY6ZzwfgpN5q9bkwxVKKCrqDCy9eCPEhHUHhxU5kKwSG8SW7SPCih
+hu5aC8VVJbjxa+r8yB9/OXpLQeokKl8uqPZlAfl1FmNTutQQerFYLBrMg9y
k7z5+YEpFV6y3uhaUOVFrS172vaZUWF4QJfp5gletOMOrZl0hQo7/02i7Zd5
UV+be72+NRW0RPN5JQJ5kbrX/XIRZyo08zaIBPTzor+9oRm5AVSYWY0dHQri
Q0a++m+tH1JhP32P+9dEPpQtz52OD6HC7gZfFYFCPmTuF5XiHUEF5C6dZzDJ
h2p2x8WeiKeCgWfqrzXEjwJD0oPGcqgQ4iZkbI0XQHz3OM7Y5lHhXmOz5HYV
AZTk5IqfLcDav9bWUjwlgIoNDr+llVCh0yxyv5yvAJoV+tLMXIf1p7ZyfoYs
gAxe4TiVvlLhuuKDwCBnQfT9qUNf3gA2/7CLDdt8BNH1oK5E9e9UCNT2rll8
LIj8rycqHR2nwoFd98yVcgRR4W5Vg/NzVOBbcvA+QRFEYuXW0V7rVNAPQtW7
AoTQ2+yWS2t0zInL5xJihJBqkvKOABwNriT5njTJFEKn/f4WhLPRgF3gyJeP
PULoge7TL8kCNODs5XQ9JotHXAdXXu7E02CPbGGF9mE8eiF/1S5DhAZC005q
8efxqIBL4Ve+BA3i/sglW/vhEan3k0ijLA3ueXvezhvHo1sNcuOn5GnAfK+s
oPsPHm0URWR0KtIgT96zwlpQGIm+uKQxsIcGci4JtbMnhJG+BdWMrEkDKi6B
h1wsjL6dNd3pqkWDTTLPPnqfMLKFKvKPozQQ73rm/JYqjHxkQu+vH6PB6x6B
C2XKImh8smDCRJf2//83/wcIEidg
"]]},
Annotation[#, "Charting`Private`Tag$373270#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 1.8371173365603806`},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 1}, {1.8371173365603806`, 5.059616847231933}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.836388792061254*^9, 3.836388825735627*^9},
3.836388858035705*^9, {3.836388905299429*^9, 3.836388914449807*^9},
3.83638903263373*^9, 3.836389094335209*^9, 3.8363895069634132`*^9, {
3.83638975970226*^9, 3.836389844864629*^9}, {3.8363898945631533`*^9,
3.836389912257929*^9}},
CellLabel->
"Out[141]=",ExpressionUUID->"fa5dae18-9c6f-4249-9cf3-b1bc5b67769a"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVi38803kcx2djn5Lc8kDpx/l1JF0l+k29P+TclZPZJbVYuBD9WNaJe3Ti
ROpcNhRC2uPq9EOPaudHfjVO+pqZzYyhKzkP86PIhCnDzv3xejwfz8fj+bIO
ZTPCyCQSyWdh/zOyd9KQRFKDwKg1sJCvhO8oH1wvkdWwnplkHV6oBAf7wVNU
AzUo2rI5GwuUMHCyW2pkqIacfIPKuhwlHJ9+nmlhqgaO4HXr+3QlBBunrnRx
UEOs56D2aLwSDrlZOIbT1XDvVMDffzCV4Jm7e5+ErwZezpKfheZKyDabMbT0
HQfJum1p7r91wLilKKZ/fBy+KfWeqTLuADvxmvi4jI8QqZIlOBS0g2znIMra
MwFvhteMX7Nvh0vb6l2teifA0SqpI02ogMefaBMu3ElYJYjoy/xBAQLmoJe5
6xQwlH5XVGNtINwn23vynylYe9t0yC+nDdznHRu8rmpgI21zZZlrG0ghd/T6
+mkw9jKwNH4nhy3W10oE4mnY6/zUMOSWHGiiqdmDsZ8gNt4po9RHDhoteyxq
xWcojTgzw6HKgTEVFIYaP0Pe+ApTZk0rpKYrYjmcGbA9vPvCjfOtQJQyXegm
WjgxYVust6MVLvD9OaW1WlB9XwisURnssghlpoXMQnh/zOyHWBmwA/peDtHm
YCnfyO3AnBTit75rMX0+B6emz5r6XZXCDT4loSRoHiJYlbYKKynYynklXUt0
IBVurwgsaYHq9E0ZZx/rwKSPoeXRW8BM8zDlvT0JV7mt7q35KIErKE4/NJ6E
aTZ60Y48CSS+belcJiVhe3Fpp9F2CWzJezOSbKeH36goUWe7m6H9q830Yxf0
ML/vsHl4YjN8jlm66FyzHu7xrnYUbWqG7gd39PbbkHHt6ccdfa/EsOduvS/z
HBmXl3unDl4TA/eM3Yi8noxTl0RtiPMUQ/4qD7GRBQXf1M12TGma4Gvu4Gxi
JAUf0eSpcp82QZzKK7qijoI5q2vLjoY3wT7ypl3rTPRxCk3X0mPTBGiM6acX
qo+1x+l1zD4RJArxw4IKfXyMXOZrVyiCiwefBEQvNsBVtw7vNwsWwfaWTq/F
IQaYRM9+lvClCF6beSYvemaAC5xj5NVvG4Fqt9PcHVHxzn9tprKKGuG9+dCw
G4uKfbhNI7SoRvCXWZpwnlDxwIqCL1TOjfAoIP+KsW6hv915kzRPgLC+FZ/x
R5ifd5869JIA/8l0H1SEcNLzrvKqTALqpR5O7HsIv3Au+qsrgwCnBxqTzvsI
W5+2atDwCDBisbqKihG+3L3UwYVLQEPjhh+9BAgfZLAnHqUR4JwviUupQdjb
KuzG3WQCaB6GdykKhEdfU8bunCfg4mrh5ZPtCEuEpLyGGAJGNNGRig6E0Txm
qn4iQFTcvfFO14JnX1y59hwBCWYPKj16EB4LzLpZzCbgw9C3sl+HEe5d5Mut
OEFA4AutYPgdwmWH5n5/FUGA+NaT634jCPcfqr49G05AEWM503oMYXr+EX33
MAKCagb66yYX/tdfNolDFvrsvEYHDcJB8hz2aDABO6IPPORNI/zn+mBH2oKb
2pezg2cQpvxC9PizCEgiRTFEWoRJZqyuuCAC1K/WbHWaQzhz2duB/EACWGXy
5bnzCCs9vQxrjxIg4abM6HQIZyXxPPqYBPwHdfpTcg==
"]]},
Annotation[#, "Charting`Private`Tag$373312#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1., 0.1746485543271957},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{1, 3}, {0.1746485543271957, 0.35355338157405486`}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.836388792061254*^9, 3.836388825735627*^9},
3.836388858035705*^9, {3.836388905299429*^9, 3.836388914449807*^9},
3.83638903263373*^9, 3.836389094335209*^9, 3.8363895069634132`*^9, {
3.83638975970226*^9, 3.836389844864629*^9}, {3.8363898945631533`*^9,
3.8363899122947273`*^9}},
CellLabel->
"Out[142]=",ExpressionUUID->"33a2d8a1-08c7-477d-a608-ada5e465c519"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJwVi38803kcx2djn5Lc8kDpx/l1JF0l+k29P+TclZPZJbVYuBD9WNaJe3Ti
ROpcNhRC2uPq9EOPaudHfjVO+pqZzYyhKzkP86PIhCnDzv3xejwfz8fj+bIO
ZTPCyCQSyWdh/zOyd9KQRFKDwKg1sJCvhO8oH1wvkdWwnplkHV6oBAf7wVNU
AzUo2rI5GwuUMHCyW2pkqIacfIPKuhwlHJ9+nmlhqgaO4HXr+3QlBBunrnRx
UEOs56D2aLwSDrlZOIbT1XDvVMDffzCV4Jm7e5+ErwZezpKfheZKyDabMbT0
HQfJum1p7r91wLilKKZ/fBy+KfWeqTLuADvxmvi4jI8QqZIlOBS0g2znIMra
MwFvhteMX7Nvh0vb6l2teifA0SqpI02ogMefaBMu3ElYJYjoy/xBAQLmoJe5
6xQwlH5XVGNtINwn23vynylYe9t0yC+nDdznHRu8rmpgI21zZZlrG0ghd/T6
+mkw9jKwNH4nhy3W10oE4mnY6/zUMOSWHGiiqdmDsZ8gNt4po9RHDhoteyxq
xWcojTgzw6HKgTEVFIYaP0Pe+ApTZk0rpKYrYjmcGbA9vPvCjfOtQJQyXegm
WjgxYVust6MVLvD9OaW1WlB9XwisURnssghlpoXMQnh/zOyHWBmwA/peDtHm
YCnfyO3AnBTit75rMX0+B6emz5r6XZXCDT4loSRoHiJYlbYKKynYynklXUt0
IBVurwgsaYHq9E0ZZx/rwKSPoeXRW8BM8zDlvT0JV7mt7q35KIErKE4/NJ6E
aTZ60Y48CSS+belcJiVhe3Fpp9F2CWzJezOSbKeH36goUWe7m6H9q830Yxf0
ML/vsHl4YjN8jlm66FyzHu7xrnYUbWqG7gd39PbbkHHt6ccdfa/EsOduvS/z
HBmXl3unDl4TA/eM3Yi8noxTl0RtiPMUQ/4qD7GRBQXf1M12TGma4Gvu4Gxi
JAUf0eSpcp82QZzKK7qijoI5q2vLjoY3wT7ypl3rTPRxCk3X0mPTBGiM6acX
qo+1x+l1zD4RJArxw4IKfXyMXOZrVyiCiwefBEQvNsBVtw7vNwsWwfaWTq/F
IQaYRM9+lvClCF6beSYvemaAC5xj5NVvG4Fqt9PcHVHxzn9tprKKGuG9+dCw
G4uKfbhNI7SoRvCXWZpwnlDxwIqCL1TOjfAoIP+KsW6hv915kzRPgLC+FZ/x
R5ifd5869JIA/8l0H1SEcNLzrvKqTALqpR5O7HsIv3Au+qsrgwCnBxqTzvsI
W5+2atDwCDBisbqKihG+3L3UwYVLQEPjhh+9BAgfZLAnHqUR4JwviUupQdjb
KuzG3WQCaB6GdykKhEdfU8bunCfg4mrh5ZPtCEuEpLyGGAJGNNGRig6E0Txm
qn4iQFTcvfFO14JnX1y59hwBCWYPKj16EB4LzLpZzCbgw9C3sl+HEe5d5Mut
OEFA4AutYPgdwmWH5n5/FUGA+NaT634jCPcfqr49G05AEWM503oMYXr+EX33
MAKCagb66yYX/tdfNolDFvrsvEYHDcJB8hz2aDABO6IPPORNI/zn+mBH2oKb
2pezg2cQpvxC9PizCEgiRTFEWoRJZqyuuCAC1K/WbHWaQzhz2duB/EACWGXy
5bnzCCs9vQxrjxIg4abM6HQIZyXxPPqYBPwHdfpTcg==
"]]},
Annotation[#, "Charting`Private`Tag$373312#1"]& ]}, {}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJw92XdczP8fAPBr73UtRWhoKFQool5vQlEoRaRNQyk0SGlJQyk0lAaFhrS0
p/bQFpX23bWucXcZkequ3+f7z++vezwf9/7ce3ze79fr9X6ctN2tC/bMOByu
lwmH++9zsuHU8ODbd3AzeVqdV1sEXb6SXrD84x2EhL+YnBUTQbRRU+43khkw
GD7KtYNVBIVacdqb6GaAf4budNQPYVR87ZZkWVwGmB7sSuXpFkb8btohvpqZ
MCH3W+dmqDBqeThszu6XBdcPK1oymISRBVtUaXlGFmhHpeQe+IlHP8OQ4I2e
LKgdXtsWR8KjnVFZLZ07suFWZXdWZxMePUjwUn3emA0MtrsHecLxSD1XiH0b
Zw5QzqndOSWOR5/3tth0q+bAh/firc1ceGTz0bva/0oOOOuhX3YbQiiqbPI2
MScHeFa9qBtEIUSuzxvNPPsBardJpCblC6FXA6c/qsXmQqHwAOf2s0KIZzPI
Qm97AXyVjPtQmiKIEm+YWamcKoCdU10PX8UIIrlvKjZCbgWwKtCylhQuiHTe
D10brS2APvKlgW5PQVT5/kVp+d5COFFzLUfknCCimCzVGPQUgsCvAyUrLILo
YnZCpwdfERg8H/t44S8/SrF8aOggXQRRw2vXYY4fkfCu3ZcPFkFG5is1vSF+
dMvveK+2ZRHgN8SWM8v50eMLlH6OvCLYN9e9+/V9flS7cXwk2bAYhrrbNDWZ
+dEuYyq5KbIExA7hH5rL8SHJAD0tx/QSaN+nHS8oxocE89IiuctLgPWPZfU4
Bx9a4zTZa0wqAYP6bKOaRV7UV1/uMXGoFEJO+cKjEl7koxrEWJ0pBe3Bh+38
Z3hRj4CIyF5UDibbs0oKg3lQk7ar/ZeL5RDHSN87dY8HVbi0lnm6lEPqvsxk
+Zs86G2b95XqF+UwqzhVNGnKg7wDxl/pU8rhzcuVPDEFHiRDy1S6llQBfbr/
xLx7uNG9nsOQ+LsSBBWZs3YqciP+vaUznzmrQKEst3doOzd6F6X6ZH1bFdh0
UNSSRLnRF0OFYauTVSDH8ckQsXAj5U4Rj10vquDSh80IgUkuNNlGyyzSrIat
N0vMsxO5kF5DBn+3Tw2cdW1HIMyFJnZKlzKiayBCKi9Tk4cLeQamXFV9WwNb
gy/8PsTChdIhNju2swb8XMw4L/3iROu1gcfNt9WCgA3ZfvUrJyqounp3rrYW
1FrsWb+84ETiJUITTEx1kHB8YP8dGU5k8WTddFqsDjYMD2V/k+REb67PdLaq
1MGuFP4YJMyJVEQrKyMv14H6PC5SjZUTHb9rEy9aWAe2svoP7s5yII0Us8y4
ffXwTnplR2AuB7K1yrTMnqgHQ4M+SU0dDlRG0u3qPdoIxVf2xZV4saNB/aAf
UXqNoBWo/Yp2ix39yf8kZnihESh12hKqzuxI0/ewbbtjI4xIOR5vsGJHFcL7
/tTHNIKDrHyYrD47qjwhubOI3Ai8xr1HiFvZUU3mskdcXBNEUp5aC7SxoUbn
1K1XlpqhbOZW3pfdbKh43sXF6k8zjDoZ1T2UZ0PvnLSqr+Fa4KWe1T5NGTYU
4jBk7ibSAifjt0rmSLAhfTuhpOCjLfCN+1huOScb6r0SsiX/SQsEc/recJtj
RWP6rqIse1rh5PhGlWoWK1qR1xbIc20DzcKJR+f2sSId0vG2CO82eMrTf9dN
mRWFpuoHOAW3QeO4kuNzBVYkJmJKk33ZBrsu3ThI2MGKNJhcepOa26Dbhnd3
uiAr8h5NfBq+tR1oy8lxeT9Z0MbT3wLXP7fDe2QWOFLBgpj/fRDcuqsDjNNb
7kwbsiCNTZsyk/wu0Cxyd5ZKZkZdjw70tO7uhd8s1xp62ZjRjmeL/95T+yAt
Wnw9wocJLf6dnBhQ7Yej5BrGCW4m9G6huoM/+iuUdONWqtNwiF8qizY9/Q3Y
WQL/ierh0JMbpQ5pcoNw1N8l68nGJvxBH6adAoaA0zLv2wWPTfBUby4Ra/oO
fAXs8a9YN2Eyvznyi/QIkFczCxtTGdBHYV1SVxiBRdy8sFEKA+pVThrGqYxA
u5HxnYkkBqTltPCaaY5Ar66hBCOBAXaZrVFjhiNwi59Z9HQMA2ZT25/O3RuB
zTBVL74wBlCedMXSu0ew+RuXn73DgHXnb8lKPqOQ/dz8cIo+A0w1LJ/vDRiF
XwJbXvnoMSCXaTZ0/6NRaM5s67pyigFWiX/vaEePQqmHapjkCQY0tEjqG78Z
hXfByc4ZwICwnba/vTtG4YbDtnqCBgOEBymG7ZJjkDmZcmFpFwOUj3EwHKrH
4HnTA5mz7AwozPmg8L1+DCKc58302RhwQMTI+HTrGNhwBbqeYGXA0bnEd8pf
xiDmp/0hYGbAuajdBsuzY6BIrNUDBh3ch88m3sePw5pNtcyNP3SovBOn/uTG
OHwe7Qizm6ODzughC7rbOCS8TXW8P0uHxhPjIW6e49DHNC/9fIYOHeLyw0YB
41i+0t3VNEWHsdryANH4cYjyirRTI9ABxz3a9ap+HLZuPR2nMUwHvTfSjh/F
JyDjbk8bqZMOBxL55Vu3TYBg2hUjGcw7o9enR6QnQOSoZqxdBx3W7g/YsapM
wOFaH72ZdjrkGT+2MkMTkCUi6/irhQ7CTD8u0p0mIHfusYt6PR0mretPnK6a
APVnEoNapXToupjHYlU3ATpJlnefl9ChwiCp0b15ApxP9nSTi+kQo+mJUnom
YH11NP1lER1OCigepZEmYIcjjLEU0uHDp6f743kmwZffPmwthw73pKxliBaT
UJJVqnQ7nQ52RqqXxmwngeJc6kBIo8O5YKaIIYdJkBuzMjbGLD//9kf37Ulo
4nDbd/A1Hb6VkOurHk2C6+N6XrZUOqgaulvH5U6CZUCHTksiHcg+ISl6G5Pw
nqlnW9szOixcUnZKxxHgs+Ktn4aYbZaFmXewEADfue7x9SkdDGRnDkpyEoAe
+t6HFE0HmcdhqYJ4AhxXlIrnjKJDn2nXTfouAqxcEFrxfEwHlaWLPENnCfB9
SHF7z0NsPUwN6yKMCFD8k2nYBrNu7XEPHRMCbFn8YvE7iA7m0ftGMy4TIMZ3
f50U5seqXB88rxHAy0uYej+ADrOeNWfw9wlgu5xGMXuA7afxIkaLLwEyDQ8d
+OtLB/rJ90X3/QkQWmusm4BZRPyFJDGYAClvflcN+2D9Vd5aKIjG2rM5Czjd
p0MaXSbi7DsCHK7WOJ1zFxuvg4QOUxYBgpk/iV7CXN4j8LPkPQG0I0NymDH3
vN64sq2AAFbTnSpWXlh/xwaVFiux9fBixG73xMYf+vhzeC82n3TyYvMdbLzU
AL+j/QQowTcc8cN8x+yu2vI3Arj/6TDRwByueO2l2QgBeK3ujuXcpkNZx9Eb
8jME2DN31ij1FrbfBJY5m9cIoMeobMpypUN/bUTYaToBeo7sDbmNOebmLvbe
TQKgz1tWDmPGd5izjLASIWTMktBzE3NIC53GT4SRAp4ZHOb+/TYPvISIkCAf
L9nrgj1PWltbEyaCyWoRIxWzEFJdZZMggnxybb82ZsH1pJ9bZYlwfj0uJ8QZ
e7/vD95J30UEV9NTF69gfna5jyavSIQnU8X5ezALlLFR1PYQIdhvxPX7DTrw
37k9p6dJhK2aDCkNzLxzJ8c8DIjQru9ggHfCzks8wfzfWSLYXBuZXnakw5MT
vsP+RkQ4ye29pw8zz5vCwccXiSDeYNT1DDO35dYvr62JsGXJ/pgk5g6esvO7
7Ijg7iJ8keFAh4gqo56c60RI5VfdMoWZa0toZ+kNImiEjOXmY+b8utzS6UGE
FBthoXOY24MiTxjfJcIY/ky6JuZwVfmmQW8ifA8HojRmjuir9UQ/bH2in99e
tadD69E/Oo6BRFBYYKmfxhy6+Kx26SERPN7Y1H3BzH66tepvGBH4Ath78v5r
/9fmsF8E1n+Jw3jKf+0z18uZo7D+HSdTnmBmY1Ur5YshQszuMypumJuLOvfH
xhGh+ZnphjXmR7YORVsSiJAok/3gAmbWuuQC2RQizGlaRh/GPHL0hP7kKyLY
X4tV34O5oGqJkJROBKd9kpnS/z1/KP7+pXfY+ngwz4thNi/TxuOziPAJLNd5
MasemM3pfk+EK+NHxln+G39RtO7jXOz99xREr1/H4us+zbETBURY7eoQ+I35
Y96kJ66ICOndr2womEOVw/lqSojAStcOmsNs8V418145tj4NVXdImNUVhnX2
VxFBr1JBfQIzZ0bQELWGCDO1CY0jmCdkdt/OqSPCKEFK9jvm4rR+TodGbD1d
u00GMYdv902XbiGCF7nSdACzVYqs1ngbEQ4J/t31nw9IdvUndhChdiyx7T9z
JXq6mHZjDig+PPTf74tKsQr2EaHy+tUHw5hLYltSOvuJIKGW8XQMc4SQ28Gw
ASLsac7wIGC2eSrWc/w7Eaw13RVnMGvw1TkwRoggN7EjfwEzT6TjZuU4EVRO
NbP+wEzgFEz0IhDBQdNLZRVzWWiFqtoUEWRK9HfhsPV8wmr7eWmGCJL/TGmc
mO0ectllk4nw1K8wAo/5EK5o7doiEa7+uvN3G2Y+f/PYHVQisOgVHlTEXHH/
Q/OLX9h+ssEpHMMc/dfE8sIfIhTKHRs5h/ma18YK3z8izLZYWFva/3feziqE
MLDzKh8y+QDzNHWlDjGRoKS2cSQKc9XNV5c3WEhwjnQ0+zVmeyfaYw8uEuwQ
Mqhqwaw1myCzj5cE1r1Cm8OYBa+j6gV+EogF+4jRMNdYP1+yFSFBevPL2q3Y
+cCb7T9vtIMEnzJ/0/wxk7+NzvHIkGDpen7XS8y1Fx4FtsmRgFWR8KAUs9O5
gY86u0kQh7ZepmH+dPKeyJ6DJJB5y0W/iZ3nuKYdeWRNEtDak72jMd841n7y
nRYJ3ilHthdiFtGWuLcVkUC5d3XmL2aXA9XDXAYk0N1pLfkMiyf1fQO5FWdJ
8NH6o385ZlHX5QBHIxIIqacWTmKuy9gl33KRBNTkSj91LB4Jiz9zD7QhwYNn
5vVEzE7FOSf3XSPBxcmuOAEsntWeb9kyYU+ChaYeTR3MjuFrn464YPPNwi2k
Yq7+d53nrxcJDPZnMDv+Fy9fBExkeJOggSp5PhmzvXrSR1NfEnT/knPpwyzg
0mtWFIj1l/oAr43F42tjh9+5RpIgdPyP9E4sfvPU8WtPp5GgzaDejg+L/zZX
lQRj35KAINRYcQ5z6V/dqWOZJLAPjSY8w2ytev/x6w8kOO8ilSmO5Y/i9KkB
8zIS+B/X4tuH5ZerjyrcvnSSwD3IyzXEA6svTtulffpDgk13wdgv3tj5UZHW
gX8kaPZt0lLA8uEnfsJo3ToJhs94pPph7vtqKd6Am4LqWos4FSx//ra8Et3E
PQWDwc6GsVh+1XE3etC+fQq6oYT9kT/WPknncv+pKRjZnVbx6xEdrvjRVy6c
noIEXVke2xA6kKxrYr8aTEG6dLpUL+bfclq934ymAFeuFZwXSgeJgoOnhsyn
gDBTcNEjHDsvTSoHxtymIDg3R0f2CR1WFiUFZ19MQR53+HXROGy/pM61pbyc
AoUt1raZmPefLwkwScH6r5o4dSgey7dFZ2n16VPwWnG4y+oFHSjegT3JuVMw
aTbYWYbVPzNss0+MG6fg6qvx3hisPhrY8ZGrljIFJv/y+jay6OD5xa/BY3kK
Hls52X/IxvZL8Jn7u39NQbPl3UXz93Qwnp0iJ6xOwbh6ZVcNVq9154q1u7NM
Q+82maXIPDq0HH4QqigxDc+5F4hmWP1XaqLHEndiGkSEk4ey67D4ZlARsk1v
GjST0vydsHrSQleJM+P0NMxzfsQpNdCBeT8PX9m5afCf5k3IbcTqPXyv2PfL
0xC77b7IJ6weJfdd2r3NdRqO8F17zt1FB8lzDsbv4qehXcc/1QCrfwP0Q16X
zE4D6RPjSgBWb/dbOVmozk+DXePwIY+/dJDzMpDIXZyGSMswuuMqlk/ThWLf
Lk/DZY/iw6Zr2HlbTw2NWZuGjo4voZpY/Z6dV+Z6m38GnjMsGpSw+0AfnnxE
RWMGPOs+768TY4D0+Jnvb0NmIOWghWyTFgMiGo8UXAyfgcJE4im+owz4maUS
yhE5A47J3fGXtRnQ6M5/wOXZDIQoC1T8xO4j1zn7n6onz0BE7BepgycZkL3/
il5D4Qzo+m+h/DzPgL0RjmUTozNw/6T7x0sODNDSfBQnoT4LDc1a+cQXDBi0
k9BIPTAL3UM+VOtEBnhE5w/t1JyFnTphlyZfYvejme+SikdnQcXNKo2I3c+2
x+1J1zg1Cwa9L5V/v2EA84/BPBPzWbDPncg0LmBAZ45SW9TDWdh6Xiv0ZzsD
LLb3/mP6OguVTffqljcZwC/hXlo9MAuiLJw900yb0CAsesfr+yzYKvk4j7Bs
gjzXVTJ5fBbONk8ZdXBsAu3X7GAveRZKzivQagQ24eFnRnEqYxbUilbPU3ds
QrbnXrfDu+fA0GLta/ixTVjpiCLdDpoDJRPZwJHHmzDGM+C0ETwHEnz3xPBP
NqHRcBstLHQOruMFThlEb8Kznpz1V5FzIDV83KsxZhN297eJdMfPgYWrr1pz
8iZYDTPpKeXMwSCTurBY/ia0znl9IPbPgcIsyXD96yYkslp5XpAjA39FtE4Y
HocY18QPfpEnw/6cMZFvwjh0valv5bwSGcuvqgPSojik+lD33tm9ZChujhar
F8eh9k1FH/1DZCD7fs3nkMKhv2u/AnQMyVBSF9DdpIBDl348jtztSYYiNpX8
39o4JDxR+oa5mQxZB7XVrrniUDSvn195KxleiHv+ErqFQ9xHTly++ZkMLsLD
zI23cYg5sZ9vsIcMmnY1fPKeOPTTmOb9fpgM9t6Kv+k+ONTXonjeiEYGdnwH
NzUcu8/nJa+nSs5D0UQQbSgDh9j8gkwP35kHZ/nxzW3TOFTyY+lfncc8OFpH
SbDPYvNzuPz61N15mLHmSF+ew6Hm8/sWTHznIS4+lfF5EYceyYwHuIXMw87L
yRLRv3CItf3Qh7cv58Fm9fimBQsTYhZeZuJvnAeFkz/cd8gxIdx7qwISfgFS
F0b1opyZUOvSkNtr0QWAqFpJAVcm9ETVeK/FlgVIU64Vir3FhMQrdPMGpBag
cbPMK92TCe1tU/zQrrgA5buGr3z3Z0IWMz8z83UWgDfiZmNhLBOqlA575eO8
AO8r9npur2NC7kkFUfjGBbA1Ikk8k2JG5RtJYY3NC1A5GCXzZicz2rAKDXJv
W4CN9dZfZbLMKEzW0qu/awFWV1boZCVmlJLLbRkztACmVkdEb2kwo5ZP9ip4
ygIk3Sc8YjdiRlumtnYKbVmEM3K5oX4hzMjyJEdLg+QirJ+2/k0LZ0Zvsn5+
uiO1CIXZ+dn2T5iRys3PRV9kFkFgmvLHPJYZHVu5m/R8zyIo1N3Idk1nRs4c
/TeEdBfBpbP2tuYnZlSrHM4p5LYIf8eWtwSsMSONb+LdMbcXYXBSJ2kngxkV
Psh6LuKxCMUPqwNbmFjQm+5WyS3eixCn1fVUgosFhd9i27Pj4SKgVgmtRXEW
dKH4ofGeF4vA/eLtxiENFjSn5Zd0+tMizP9M2/fGiwXZTPFad9YvglR4FVfV
fRY0Epkie7ZpEUYPOi4P+LGgrrHqXKP2RRCUPr8uEcqCivzXPpn1L8JhXkrh
1xcs6EHjvSn72UXga3uJF65kQUJn3FUe8i+BWrP08WUcK0prEODRElqCjIc7
GtfYWJHq4bz5H8LY9y7jrDw8rOicIjnTVmIJeDfc146KsqIIdivpY3JLcCbs
cuOcEitibTothtNagqDzJeu2pqzozxFpnL/9EjzSTfM+lM+KQoo/TRx0WoKC
Yf4EwRJWJKJsUUtxXgJ1KcIirZIV7ZdM8LG8vQTXFm7dam5hRbdXeVeO+i6B
3M0W+9ZxVjRfsjq//mwJBIhXO7QE2NDYnr6v92uW4PM56d8m3mzo9aKQH0vd
EtS0MPtU+7Mhu/cm8lENS6Chq86rHMKG5uWGvNNal2CXSGqcTAwb+rN1Qqqt
bwmWPNX+eeayISHuJUeRmSVwm9lsLiWxoVOzHBv5fBSIuaN2ReESO+J6dzrj
kCAF4lKCnxZZsqMu28hzjXgKJIqZKOvbsyOTcf70AXEKVPxdpcR4siObb6Kn
NqQpMGiWrvg+lh35Nso+O61BAYGvFwooX9lR4SuQm7aiwGOXG3HPLTnQL59f
HLa2FOAQ3+7j6sCBNMyyFsevUSBBrSnn0i0OVC0gUDzkRIFxa/ObxkEcqDVw
4linOwUIaJZ1KYMDjdr5WReFUiCgKC7j6w8OxK5QnRSYT4GZSpm6e/Gc6DTL
LX96IQXwQc9adNM40ZNJGTufYgpYPW7gkPnAiYQSI5Q8Kyhg2KLDLtbAibZx
mVc4NlJg0yg+hEjhROqLqwPnBilAe7V986ABF7Is0BCSYlBACNiUA8W4UZn5
Kn8fjgpMccIWyru4ET97FW8wCxWC9tQ6reznRvUW2pzznFTwzTCtmTPmRjLc
JzZLhKkQY6ZzwfgpN5q9bkwxVKKCrqDCy9eCPEhHUHhxU5kKwSG8SW7SPCih
+hu5aC8VVJbjxa+r8yB9/OXpLQeokKl8uqPZlAfl1FmNTutQQerFYLBrMg9y
k7z5+YEpFV6y3uhaUOVFrS172vaZUWF4QJfp5gletOMOrZl0hQo7/02i7Zd5
UV+be72+NRW0RPN5JQJ5kbrX/XIRZyo08zaIBPTzor+9oRm5AVSYWY0dHQri
Q0a++m+tH1JhP32P+9dEPpQtz52OD6HC7gZfFYFCPmTuF5XiHUEF5C6dZzDJ
h2p2x8WeiKeCgWfqrzXEjwJD0oPGcqgQ4iZkbI0XQHz3OM7Y5lHhXmOz5HYV
AZTk5IqfLcDav9bWUjwlgIoNDr+llVCh0yxyv5yvAJoV+tLMXIf1p7ZyfoYs
gAxe4TiVvlLhuuKDwCBnQfT9qUNf3gA2/7CLDdt8BNH1oK5E9e9UCNT2rll8
LIj8rycqHR2nwoFd98yVcgRR4W5Vg/NzVOBbcvA+QRFEYuXW0V7rVNAPQtW7
AoTQ2+yWS2t0zInL5xJihJBqkvKOABwNriT5njTJFEKn/f4WhLPRgF3gyJeP
PULoge7TL8kCNODs5XQ9JotHXAdXXu7E02CPbGGF9mE8eiF/1S5DhAZC005q
8efxqIBL4Ve+BA3i/sglW/vhEan3k0ijLA3ueXvezhvHo1sNcuOn5GnAfK+s
oPsPHm0URWR0KtIgT96zwlpQGIm+uKQxsIcGci4JtbMnhJG+BdWMrEkDKi6B
h1wsjL6dNd3pqkWDTTLPPnqfMLKFKvKPozQQ73rm/JYqjHxkQu+vH6PB6x6B
C2XKImh8smDCRJf2//83/wcIEidg
"]]},
Annotation[#, "Charting`Private`Tag$373270#1"]& ]}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{1., 0.1746485543271957},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 3}, {0, 3}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.836388792061254*^9, 3.836388825735627*^9},
3.836388858035705*^9, {3.836388905299429*^9, 3.836388914449807*^9},
3.83638903263373*^9, 3.836389094335209*^9, 3.8363895069634132`*^9, {
3.83638975970226*^9, 3.836389844864629*^9}, {3.8363898945631533`*^9,
3.836389912299251*^9}},
CellLabel->
"Out[143]=",ExpressionUUID->"fbb0c262-6e5d-4b69-a848-8db5d982911a"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SqrtBox["t"]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]}], "+",
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "-",
SqrtBox["t"]}]]}]}], ")"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "t"}]]}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "1"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SqrtBox["t"]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]}], ")"}], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-", "t"}]]}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "1", ",", "10"}], "}"}]}], "]"}], "\[IndentingNewLine]",
RowBox[{"%", "+", "%%"}]}], "Input",
CellChangeTimes->{{3.836389636156288*^9, 3.8363896780273657`*^9}},
CellLabel->
"In[111]:=",ExpressionUUID->"63a092d6-e76c-466b-a1de-65e5669190f4"],
Cell[BoxData["1.8817489036907606`"], "Output",
CellChangeTimes->{3.83638967841107*^9},
CellLabel->
"Out[111]=",ExpressionUUID->"1c3a9cdc-ba9c-4a59-932e-148a03cff3e4"],
Cell[BoxData["0.09197993834067714`"], "Output",
CellChangeTimes->{3.836389678417878*^9},
CellLabel->
"Out[112]=",ExpressionUUID->"2e67072d-6bf4-40e5-81bc-aad58cbdfc01"],
Cell[BoxData["1.9737288420314378`"], "Output",
CellChangeTimes->{3.836389678419406*^9},
CellLabel->
"Out[113]=",ExpressionUUID->"abfda899-f5e1-4493-bb55-af88d3a517d7"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "-", "1"}], ")"}], "2"]}]], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}],
"]"}]], "Input",
CellChangeTimes->{{3.836389690317029*^9, 3.836389726492511*^9}, {
3.836390000837953*^9, 3.836390082262165*^9}, {3.836390458881764*^9,
3.8363904732885857`*^9}},
CellLabel->
"In[156]:=",ExpressionUUID->"84ef34cc-d0af-4dad-ace1-2999f375ef32"],
Cell[BoxData["1.973732150089823`"], "Output",
CellChangeTimes->{{3.836389719659786*^9, 3.836389727189389*^9},
3.836390007119467*^9, 3.836390083435524*^9, {3.836390462826747*^9,
3.836390473737751*^9}},
CellLabel->
"Out[156]=",ExpressionUUID->"28580e7c-1034-4338-a1c6-dae2ceef218d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"NIntegrate", "[",
RowBox[{
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "-", "1"}], ")"}], "2"]}]], ",", " ",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-",
SqrtBox["2"]}], ",",
SqrtBox["2"]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.836390492489275*^9, 3.836390493825037*^9}, {
3.8363905242990723`*^9, 3.8363905289620047`*^9}},
CellLabel->
"In[159]:=",ExpressionUUID->"cdbb2f15-1478-4792-9ff5-02b991a5d059"],
Cell[BoxData["1.8817489036907618`"], "Output",
CellChangeTimes->{3.836390494073265*^9, 3.836390529403555*^9},
CellLabel->
"Out[159]=",ExpressionUUID->"c23a358e-d8c8-4544-b6aa-1577db4692b8"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SqrtBox["t"]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]}], "+",
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "-",
SqrtBox["t"]}]]}]}], ")"}]}], "\[IndentingNewLine]",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
SqrtBox["t"], "%"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "1"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Series", "[",
RowBox[{
RowBox[{
SqrtBox[
RowBox[{"1", "-", "t"}]], "%%"}], ",", " ",
RowBox[{"{",
RowBox[{"t", ",", "1", ",", "1"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"N", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "/",
RowBox[{"(",
RowBox[{"2",
SqrtBox["t"]}], ")"}]}], ")"}],
RowBox[{"(",
RowBox[{"1", "/",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]}], ")"}]}], "/.",
RowBox[{"t", "\[Rule]", "1"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.836391425378421*^9, 3.83639144470743*^9}, {
3.836391604568988*^9, 3.836391619767754*^9}, {3.836391850871241*^9,
3.836391863774355*^9}},
CellLabel->
"In[176]:=",ExpressionUUID->"e4184efb-8c40-4809-b67a-d58246af02b1"],
Cell[BoxData[
FractionBox[
RowBox[{
FractionBox["1",
SqrtBox[
RowBox[{"1", "-",
SqrtBox["t"]}]]], "+",
FractionBox["1",
SqrtBox[
RowBox[{"1", "+",
SqrtBox["t"]}]]]}],
RowBox[{"2", " ",
SqrtBox["t"]}]]], "Output",
CellChangeTimes->{
3.8363914452127047`*^9, {3.836391606246731*^9, 3.836391620117791*^9}, {
3.8363918576165447`*^9, 3.836391864379077*^9}},
CellLabel->
"Out[176]=",ExpressionUUID->"2dbb625b-7754-49b7-8904-43a8219b303c"],
Cell[BoxData[
InterpretationBox[
RowBox[{"1", "+",
FractionBox[
RowBox[{"3", " ", "t"}], "8"], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[", "t", "]"}],
RowBox[{"3", "/", "2"}]],
SeriesData[$CellContext`t, 0, {}, 0, 3, 2],
Editable->False]}],
SeriesData[$CellContext`t, 0, {1, 0,
Rational[3, 8]}, 0, 3, 2],
Editable->False]], "Output",
CellChangeTimes->{
3.8363914452127047`*^9, {3.836391606246731*^9, 3.836391620117791*^9}, {
3.8363918576165447`*^9, 3.836391864381093*^9}},
CellLabel->
"Out[177]=",ExpressionUUID->"3c0f6deb-b6bc-433e-9190-0f8d380b208e"],
Cell[BoxData[
InterpretationBox[
RowBox[{
FractionBox["1",
SqrtBox["2"]], "+",
FractionBox[
RowBox[{
SqrtBox[
RowBox[{"1", "-", "t"}]], " ",
SqrtBox[
RowBox[{"t", "-", "1"}]]}],
RowBox[{"2", " ",
SqrtBox["2"], " ",
SqrtBox[
RowBox[{
RowBox[{"-", "1"}], "+", "t"}]]}]], "-",
FractionBox[
RowBox[{"3", " ",
RowBox[{"(",
RowBox[{"t", "-", "1"}], ")"}]}],
RowBox[{"8", " ",
SqrtBox["2"]}]], "+",
InterpretationBox[
SuperscriptBox[
RowBox[{"O", "[",
RowBox[{"t", "-", "1"}], "]"}],
RowBox[{"3", "/", "2"}]],
SeriesData[$CellContext`t, 1, {}, 0, 3, 2],
Editable->False]}],
SeriesData[$CellContext`t, 1, {
2^Rational[-1, 2], Rational[1, 2]
2^Rational[-1, 2] (1 - $CellContext`t)^
Rational[1, 2] (-1 + $CellContext`t)^Rational[-1, 2], Rational[-3, 8]
2^Rational[-1, 2]}, 0, 3, 2],
Editable->False]], "Output",
CellChangeTimes->{
3.8363914452127047`*^9, {3.836391606246731*^9, 3.836391620117791*^9}, {
3.8363918576165447`*^9, 3.836391864383071*^9}},
CellLabel->
"Out[178]=",ExpressionUUID->"6f469117-47f4-4878-a984-32ade33ad1ac"],
Cell[BoxData["0.35355339059327373`"], "Output",
CellChangeTimes->{
3.8363914452127047`*^9, {3.836391606246731*^9, 3.836391620117791*^9}, {
3.8363918576165447`*^9, 3.836391864384933*^9}},
CellLabel->
"Out[179]=",ExpressionUUID->"bd9d62ca-16df-457f-932e-e7ff898de24c"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Quartic", "Section",
CellChangeTimes->{{3.836884157840703*^9,
3.836884159055121*^9}},ExpressionUUID->"b541a326-aedc-4840-8427-\
341e00aafcb5"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "x"}], ")"}], "^", "k"}], " ", "/", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "!"}], ")"}], "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "\[Infinity]"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Sum", "[",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(", "x", ")"}], "^", "k"}], " ", "/", " ",
RowBox[{
RowBox[{"(",
RowBox[{"k", "!"}], ")"}], "^", "2"}]}], ",", " ",
RowBox[{"{",
RowBox[{"k", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.836393396326991*^9, 3.836393420144144*^9}, {
3.836393642943462*^9, 3.8363936455982027`*^9}, {3.8363938428693047`*^9,
3.836393844251854*^9}, {3.836453051142881*^9, 3.836453054861514*^9}},
CellLabel->
"In[352]:=",ExpressionUUID->"1e0ca0ff-7a1d-43fb-a849-b2a8d9570ec6"],
Cell[BoxData[
RowBox[{"BesselJ", "[",
RowBox[{"0", ",",
RowBox[{"2", " ",
SqrtBox["x"]}]}], "]"}]], "Output",
CellChangeTimes->{{3.836393415885787*^9, 3.8363934204771023`*^9},
3.836393844570442*^9, 3.8364530551863003`*^9},
CellLabel->
"Out[352]=",ExpressionUUID->"f728ec65-28d3-4b96-a346-0458f4718d8d"],
Cell[BoxData[
RowBox[{"BesselI", "[",
RowBox[{"0", ",",
RowBox[{"2", " ",
SqrtBox["x"]}]}], "]"}]], "Output",
CellChangeTimes->{{3.836393415885787*^9, 3.8363934204771023`*^9},
3.836393844570442*^9, 3.836453055188506*^9},
CellLabel->
"Out[353]=",ExpressionUUID->"44b831df-5af6-4bcc-af98-c1b87ff50d7f"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"BesselJ", "[",
RowBox[{"0", ",", "x"}], "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.836393845708008*^9, 3.836393858875296*^9}},
CellLabel->
"In[266]:=",ExpressionUUID->"2ed2682a-1939-4c67-8624-076a267b0a9c"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVl3k41G8XxkVkHWPJNmMdUSgUJclzKqkk9asURSGiTSJLlhaSRIiSSpRs
JURUljy27OuMZaYI2dcRshbv950/Zq7Pdc08c59z3+c811fR7upRB04ODg5u
4u3/ny9v2vFo24cYJqz8/8VG5QwF05MKFxD/qLnIEsErFUUBCgo3kPVS5t4x
gkmRnz7wM/1R/Zq1LxkEvyx+KM+tEIwGPSIkswjWYNuHrTiGo1jDzbl3Ce4k
xS3/bY9EWn0kDzOClZP5ti4uPUGbfNEpEsGXd7pfmZN/huzf9diWL7PRx5bu
xJk9saj6teRDF4IXL5l2/HaMR27KvB2iBL9a1RE8t/c18g/4aZb2j42M6h+t
m21PQDzxNf3bCR6K2VcycyERjfdzvC76y0ah9v+sppeSULd5/u3tBDOWnB5P
yr9Fz1yyMkSW2MijUk6LnfUOne7y/Oe8yEYyUS2143veo5/L9GulC2xkpwZc
o46ZiGfmQd3BeTbiXPJunPH9gPYuP/54Z46NWrrNZWf2ZiEppbCS9Fk28nov
kDfVno1A5/uxoRk2Mokc4Jl69RFtK11mzk6zEdWr5PjvCznoVWruvaUpNire
4znJXspFr6ozrQcn2WjNj1+q4/J5aEDg7ZoDY2zELP7qPjaUhzS2iHfxjrLR
u+SYstGsfHTbe3Nv0TAbmbmanR3ZU4ja5dhuQoNsFM2XHz3oiJE7S7dap4eN
cjxNXN2kitHMkUHJ5C42ih3ZJj3tW4zM94fHCP1kI+cmUcepvSVoLCh/M/7O
RqKxVZy/20vR1vu7u98z2GiJ9Omti0EZsg0wbWlsZqO+O2+OTL4qQ1cOZHMM
N7LRJ8ebcewL5ehOiTTPci0bndqioz+x9A3Zz5I7s8vY6HVN/LVR+WrEDteM
2Z/FRjMxuWpdodXoyeZ0xrMMNjJ2rO2lL1Sjv1eK33SlsdEY15x5PqMG7Y18
vuZAMhvp7TTTDw6qQzcOUvminrNRU+ZfTlV2I1qtEn6W+w6hF/GdEdrUhB5k
pLx55cdGO1Qe6wfZN6F3XuPRWt5sFDbzdtq7uQm9FL4ZucmNjXQetTrYpTWj
sW4PsTf2bHSrRsNE+ywDWaxhL1/dy0apWZ9V0p4w0Ib9WrSTu9iIHrOba10d
A2UvnZTcspPIr6NFodT2FvSuwdqrWoeNarjubuIQa0WX1dKsXWhsJLHzh2hj
RRvKcTpWl7o8gTIyg39c3vQdrb/9WKPt/QQaER0JNbH9jkQ09a3yUiaQqoeJ
4frH39Gq5atiUQkT6JWBwOvehe+o56WpklrMBIqsDj1/6tsPdF9lzZpB/wnk
0Rv+e59VJzrDNaUcd2ICxQvUBojs7UYSGxhW4nPjyHCnj9XtM90oMEoypH5y
HHU4q+uyPbtRXsl/T/1GxpEUPWSg7l03okZFm5d2jqNHMaYH7pN7kMzU968/
y8ZRwLoG0sqPHpSbwsl2CBtHjqj52ZhrL8r1pRmWU8cRR8Js/o+QXjQgbOB9
d+04illN7ahJ7EWt2wKPGpDGUVX1ebm3bb1I8vDPvsiVMbT++N8EB/0+ZGM9
Of6jZwwNOam+/7mqHx3pmQjqThxDFyP9ipoiBtB7g32H65THkHP/ht6cjGF0
Klkz6p/gKOo+w+ItqR5GewYunZ/nHEXHmPc31fcNI8n3gddH5keQXu3gjX6Z
ETTUnnEip28EcWUlkSWCRhBzo011V8EIivFVNPQ8O4r2PtNVf+40gkrEpJ9t
J4+jAr7LXWUFw4hf8a5ql94kIh2RGtIyGUJh5Fq11zbTyHsg4Oxd035k9+M4
5qqbRXEd6TmSuT3o2re7dldVF9Ex5dXmpJ4fKMtF8JjUgX9oaAu/pfzrFvTa
59KI1kkOkNC3qZoPrEb+8X//mxlbBXYGN3nL/D4hDkY3FHpzAUdIVG5yfThW
uX7e67gaN8iujhoT2lqEN+p3HYvX4oZb5MH7KpFFWIfDQnNkKze4q+oMkyeK