-
Notifications
You must be signed in to change notification settings - Fork 762
/
blender_script.py
533 lines (436 loc) · 18.5 KB
/
blender_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
"""
Script to run within Blender to render a 3D model as RGBAD images.
Example usage
blender -b -P blender_script.py -- \
--input_path ../../examples/example_data/corgi.ply \
--output_path render_out
Pass `--camera_pose z-circular-elevated` for the rendering used to compute
CLIP R-Precision results.
The output directory will include metadata json files for each rendered view,
as well as a global metadata file for the render. Each image will be saved as
a collection of 16-bit PNG files for each channel (rgbad), as well as a full
grayscale render of the view.
"""
import argparse
import json
import math
import os
import random
import sys
import bpy
from mathutils import Vector
from mathutils.noise import random_unit_vector
MAX_DEPTH = 5.0
FORMAT_VERSION = 6
UNIFORM_LIGHT_DIRECTION = [0.09387503, -0.63953443, -0.7630093]
def clear_scene():
bpy.ops.object.select_all(action="SELECT")
bpy.ops.object.delete()
def clear_lights():
bpy.ops.object.select_all(action="DESELECT")
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, bpy.types.Light):
obj.select_set(True)
bpy.ops.object.delete()
def import_model(path):
clear_scene()
_, ext = os.path.splitext(path)
ext = ext.lower()
if ext == ".obj":
bpy.ops.import_scene.obj(filepath=path)
elif ext in [".glb", ".gltf"]:
bpy.ops.import_scene.gltf(filepath=path)
elif ext == ".stl":
bpy.ops.import_mesh.stl(filepath=path)
elif ext == ".fbx":
bpy.ops.import_scene.fbx(filepath=path)
elif ext == ".dae":
bpy.ops.wm.collada_import(filepath=path)
elif ext == ".ply":
bpy.ops.import_mesh.ply(filepath=path)
else:
raise RuntimeError(f"unexpected extension: {ext}")
def scene_root_objects():
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def scene_bbox(single_obj=None, ignore_matrix=False):
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def scene_meshes():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def normalize_scene():
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
def create_camera():
# https://b3d.interplanety.org/en/how-to-create-camera-through-the-blender-python-api/
camera_data = bpy.data.cameras.new(name="Camera")
camera_object = bpy.data.objects.new("Camera", camera_data)
bpy.context.scene.collection.objects.link(camera_object)
bpy.context.scene.camera = camera_object
def set_camera(direction, camera_dist=2.0):
camera_pos = -camera_dist * direction
bpy.context.scene.camera.location = camera_pos
# https://blender.stackexchange.com/questions/5210/pointing-the-camera-in-a-particular-direction-programmatically
rot_quat = direction.to_track_quat("-Z", "Y")
bpy.context.scene.camera.rotation_euler = rot_quat.to_euler()
bpy.context.view_layer.update()
def randomize_camera(camera_dist=2.0):
direction = random_unit_vector()
set_camera(direction, camera_dist=camera_dist)
def pan_camera(time, axis="Z", camera_dist=2.0, elevation=-0.1):
angle = time * math.pi * 2
direction = [-math.cos(angle), -math.sin(angle), -elevation]
assert axis in ["X", "Y", "Z"]
if axis == "X":
direction = [direction[2], *direction[:2]]
elif axis == "Y":
direction = [direction[0], -elevation, direction[1]]
direction = Vector(direction).normalized()
set_camera(direction, camera_dist=camera_dist)
def place_camera(time, camera_pose_mode="random", camera_dist_min=2.0, camera_dist_max=2.0):
camera_dist = random.uniform(camera_dist_min, camera_dist_max)
if camera_pose_mode == "random":
randomize_camera(camera_dist=camera_dist)
elif camera_pose_mode == "z-circular":
pan_camera(time, axis="Z", camera_dist=camera_dist)
elif camera_pose_mode == "z-circular-elevated":
pan_camera(time, axis="Z", camera_dist=camera_dist, elevation=0.2617993878)
else:
raise ValueError(f"Unknown camera pose mode: {camera_pose_mode}")
def create_light(location, energy=1.0, angle=0.5 * math.pi / 180):
# https://blender.stackexchange.com/questions/215624/how-to-create-a-light-with-the-python-api-in-blender-2-92
light_data = bpy.data.lights.new(name="Light", type="SUN")
light_data.energy = energy
light_data.angle = angle
light_object = bpy.data.objects.new(name="Light", object_data=light_data)
direction = -location
rot_quat = direction.to_track_quat("-Z", "Y")
light_object.rotation_euler = rot_quat.to_euler()
bpy.context.view_layer.update()
bpy.context.collection.objects.link(light_object)
light_object.location = location
def create_random_lights(count=4, distance=2.0, energy=1.5):
clear_lights()
for _ in range(count):
create_light(random_unit_vector() * distance, energy=energy)
def create_camera_light():
clear_lights()
create_light(bpy.context.scene.camera.location, energy=5.0)
def create_uniform_light(backend):
clear_lights()
# Random direction to decorrelate axis-aligned sides.
pos = Vector(UNIFORM_LIGHT_DIRECTION)
angle = 0.0092 if backend == "CYCLES" else math.pi
create_light(pos, energy=5.0, angle=angle)
create_light(-pos, energy=5.0, angle=angle)
def create_vertex_color_shaders():
# By default, Blender will ignore vertex colors in both the
# Eevee and Cycles backends, since these colors aren't
# associated with a material.
#
# What we do here is create a simple material shader and link
# the vertex color to the material color.
for obj in bpy.context.scene.objects.values():
if not isinstance(obj.data, (bpy.types.Mesh)):
continue
if len(obj.data.materials):
# We don't want to override any existing materials.
continue
color_keys = (obj.data.vertex_colors or {}).keys()
if not len(color_keys):
# Many objects will have no materials *or* vertex colors.
continue
mat = bpy.data.materials.new(name="VertexColored")
mat.use_nodes = True
# There should be a Principled BSDF by default.
bsdf_node = None
for node in mat.node_tree.nodes:
if node.type == "BSDF_PRINCIPLED":
bsdf_node = node
assert bsdf_node is not None, "material has no Principled BSDF node to modify"
socket_map = {}
for input in bsdf_node.inputs:
socket_map[input.name] = input
# Make sure nothing lights the object except for the diffuse color.
socket_map["Specular"].default_value = 0.0
socket_map["Roughness"].default_value = 1.0
v_color = mat.node_tree.nodes.new("ShaderNodeVertexColor")
v_color.layer_name = color_keys[0]
mat.node_tree.links.new(v_color.outputs[0], socket_map["Base Color"])
obj.data.materials.append(mat)
def create_default_materials():
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
if not len(obj.data.materials):
mat = bpy.data.materials.new(name="DefaultMaterial")
mat.use_nodes = True
obj.data.materials.append(mat)
def find_materials():
all_materials = set()
for obj in bpy.context.scene.objects.values():
if not isinstance(obj.data, (bpy.types.Mesh)):
continue
for mat in obj.data.materials:
all_materials.add(mat)
return all_materials
def get_socket_value(tree, socket):
default = socket.default_value
if not isinstance(default, float):
default = list(default)
for link in tree.links:
if link.to_socket == socket:
return (link.from_socket, default)
return (None, default)
def clear_socket_input(tree, socket):
for link in list(tree.links):
if link.to_socket == socket:
tree.links.remove(link)
def set_socket_value(tree, socket, socket_and_default):
clear_socket_input(tree, socket)
old_source_socket, default = socket_and_default
if isinstance(default, float) and not isinstance(socket.default_value, float):
# Codepath for setting Emission to a previous alpha value.
socket.default_value = [default] * 3 + [1.0]
else:
socket.default_value = default
if old_source_socket is not None:
tree.links.new(old_source_socket, socket)
def setup_nodes(output_path, capturing_material_alpha: bool = False):
tree = bpy.context.scene.node_tree
links = tree.links
for node in tree.nodes:
tree.nodes.remove(node)
# Helpers to perform math on links and constants.
def node_op(op: str, *args, clamp=False):
node = tree.nodes.new(type="CompositorNodeMath")
node.operation = op
if clamp:
node.use_clamp = True
for i, arg in enumerate(args):
if isinstance(arg, (int, float)):
node.inputs[i].default_value = arg
else:
links.new(arg, node.inputs[i])
return node.outputs[0]
def node_clamp(x, maximum=1.0):
return node_op("MINIMUM", x, maximum)
def node_mul(x, y, **kwargs):
return node_op("MULTIPLY", x, y, **kwargs)
input_node = tree.nodes.new(type="CompositorNodeRLayers")
input_node.scene = bpy.context.scene
input_sockets = {}
for output in input_node.outputs:
input_sockets[output.name] = output
if capturing_material_alpha:
color_socket = input_sockets["Image"]
else:
raw_color_socket = input_sockets["Image"]
# We apply sRGB here so that our fixed-point depth map and material
# alpha values are not sRGB, and so that we perform ambient+diffuse
# lighting in linear RGB space.
color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
color_node.from_color_space = "Linear"
color_node.to_color_space = "sRGB"
tree.links.new(raw_color_socket, color_node.inputs[0])
color_socket = color_node.outputs[0]
split_node = tree.nodes.new(type="CompositorNodeSepRGBA")
tree.links.new(color_socket, split_node.inputs[0])
# Create separate file output nodes for every channel we care about.
# The process calling this script must decide how to recombine these
# channels, possibly into a single image.
for i, channel in enumerate("rgba") if not capturing_material_alpha else [(0, "MatAlpha")]:
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
output_node.base_path = f"{output_path}_{channel}"
links.new(split_node.outputs[i], output_node.inputs[0])
if capturing_material_alpha:
# No need to re-write depth here.
return
depth_out = node_clamp(node_mul(input_sockets["Depth"], 1 / MAX_DEPTH))
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
output_node.base_path = f"{output_path}_depth"
links.new(depth_out, output_node.inputs[0])
def render_scene(output_path, fast_mode: bool):
use_workbench = bpy.context.scene.render.engine == "BLENDER_WORKBENCH"
if use_workbench:
# We must use a different engine to compute depth maps.
bpy.context.scene.render.engine = "BLENDER_EEVEE"
bpy.context.scene.eevee.taa_render_samples = 1 # faster, since we discard image.
if fast_mode:
if bpy.context.scene.render.engine == "BLENDER_EEVEE":
bpy.context.scene.eevee.taa_render_samples = 1
elif bpy.context.scene.render.engine == "CYCLES":
bpy.context.scene.cycles.samples = 256
else:
if bpy.context.scene.render.engine == "CYCLES":
# We should still impose a per-frame time limit
# so that we don't timeout completely.
bpy.context.scene.cycles.time_limit = 40
bpy.context.view_layer.update()
bpy.context.scene.use_nodes = True
bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
bpy.context.scene.view_settings.view_transform = "Raw" # sRGB done in graph nodes
bpy.context.scene.render.film_transparent = True
bpy.context.scene.render.resolution_x = 512
bpy.context.scene.render.resolution_y = 512
bpy.context.scene.render.image_settings.file_format = "PNG"
bpy.context.scene.render.image_settings.color_mode = "BW"
bpy.context.scene.render.image_settings.color_depth = "16"
bpy.context.scene.render.filepath = output_path
setup_nodes(output_path)
bpy.ops.render.render(write_still=True)
# The output images must be moved from their own sub-directories, or
# discarded if we are using workbench for the color.
for channel_name in ["r", "g", "b", "a", "depth"]:
sub_dir = f"{output_path}_{channel_name}"
image_path = os.path.join(sub_dir, os.listdir(sub_dir)[0])
name, ext = os.path.splitext(output_path)
if channel_name == "depth" or not use_workbench:
os.rename(image_path, f"{name}_{channel_name}{ext}")
else:
os.remove(image_path)
os.removedirs(sub_dir)
if use_workbench:
# Re-render RGBA using workbench with texture mode, since this seems
# to show the most reasonable colors when lighting is broken.
bpy.context.scene.use_nodes = False
bpy.context.scene.render.engine = "BLENDER_WORKBENCH"
bpy.context.scene.render.image_settings.color_mode = "RGBA"
bpy.context.scene.render.image_settings.color_depth = "8"
bpy.context.scene.display.shading.color_type = "TEXTURE"
bpy.context.scene.display.shading.light = "FLAT"
if fast_mode:
# Single pass anti-aliasing.
bpy.context.scene.display.render_aa = "FXAA"
os.remove(output_path)
bpy.ops.render.render(write_still=True)
bpy.context.scene.render.image_settings.color_mode = "BW"
bpy.context.scene.render.image_settings.color_depth = "16"
def scene_fov():
x_fov = bpy.context.scene.camera.data.angle_x
y_fov = bpy.context.scene.camera.data.angle_y
width = bpy.context.scene.render.resolution_x
height = bpy.context.scene.render.resolution_y
if bpy.context.scene.camera.data.angle == x_fov:
y_fov = 2 * math.atan(math.tan(x_fov / 2) * height / width)
else:
x_fov = 2 * math.atan(math.tan(y_fov / 2) * width / height)
return x_fov, y_fov
def write_camera_metadata(path):
x_fov, y_fov = scene_fov()
bbox_min, bbox_max = scene_bbox()
matrix = bpy.context.scene.camera.matrix_world
with open(path, "w") as f:
json.dump(
dict(
format_version=FORMAT_VERSION,
max_depth=MAX_DEPTH,
bbox=[list(bbox_min), list(bbox_max)],
origin=list(matrix.col[3])[:3],
x_fov=x_fov,
y_fov=y_fov,
x=list(matrix.col[0])[:3],
y=list(-matrix.col[1])[:3],
z=list(-matrix.col[2])[:3],
),
f,
)
def save_rendering_dataset(
input_path: str,
output_path: str,
num_images: int,
backend: str,
light_mode: str,
camera_pose: str,
camera_dist_min: float,
camera_dist_max: float,
fast_mode: bool,
):
assert light_mode in ["random", "uniform", "camera"]
assert camera_pose in ["random", "z-circular", "z-circular-elevated"]
import_model(input_path)
bpy.context.scene.render.engine = backend
normalize_scene()
if light_mode == "random":
create_random_lights()
elif light_mode == "uniform":
create_uniform_light(backend)
create_camera()
create_vertex_color_shaders()
for i in range(num_images):
t = i / max(num_images - 1, 1) # same as np.linspace(0, 1, num_images)
place_camera(
t,
camera_pose_mode=camera_pose,
camera_dist_min=camera_dist_min,
camera_dist_max=camera_dist_max,
)
if light_mode == "camera":
create_camera_light()
render_scene(
os.path.join(output_path, f"{i:05}.png"),
fast_mode=fast_mode,
)
write_camera_metadata(os.path.join(output_path, f"{i:05}.json"))
with open(os.path.join(output_path, "info.json"), "w") as f:
info = dict(
backend=backend,
light_mode=light_mode,
fast_mode=fast_mode,
format_version=FORMAT_VERSION,
channels=["R", "G", "B", "A", "D"],
scale=0.5, # The scene is bounded by [-scale, scale].
)
json.dump(info, f)
def main():
try:
dash_index = sys.argv.index("--")
except ValueError as exc:
raise ValueError("arguments must be preceded by '--'") from exc
raw_args = sys.argv[dash_index + 1 :]
parser = argparse.ArgumentParser()
parser.add_argument("--input_path", required=True, type=str)
parser.add_argument("--output_path", required=True, type=str)
parser.add_argument("--num_images", type=int, default=20)
parser.add_argument("--backend", type=str, default="BLENDER_EEVEE")
parser.add_argument("--light_mode", type=str, default="uniform")
parser.add_argument("--camera_pose", type=str, default="random")
parser.add_argument("--camera_dist_min", type=float, default=2.0)
parser.add_argument("--camera_dist_max", type=float, default=2.0)
parser.add_argument("--fast_mode", action="store_true")
args = parser.parse_args(raw_args)
save_rendering_dataset(
input_path=args.input_path,
output_path=args.output_path,
num_images=args.num_images,
backend=args.backend,
light_mode=args.light_mode,
camera_pose=args.camera_pose,
camera_dist_min=args.camera_dist_min,
camera_dist_max=args.camera_dist_max,
fast_mode=args.fast_mode,
)
main()