forked from EBGU/Selfee
-
Notifications
You must be signed in to change notification settings - Fork 0
/
InferModel.py
257 lines (215 loc) · 9.25 KB
/
InferModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import math
import torch.nn as nn
import torch.nn.functional as nnF
from typing import Tuple, List, Union
import os
import numpy as np
import torch
import torchvision
import torch.utils.data as Data
from torch.utils.data.dataset import Dataset
from torchvision import datasets, transforms
from PIL import Image
from torch.nn import Parameter
from spectral_clustering import spectral_clustering, pairwise_cosine_similarity, KMeans
import time
import torchvision.transforms.functional as F
import sys
from typing import Type, Any, Callable, Union, List, Optional
from torch import Tensor
import copy
###########################
###set initial prameters###
###########################
proj_size = [2048,2048,2048,2048]
pred_size = [2048,512,2048]
CLD = True
###########################
####Pretrained ResNet50####
###########################
def timer(func):
def wrapper(*args, **kw):
time_start=time.time()
result = func(*args, **kw)
time_end=time.time()
print('time cost',time_end-time_start,'s')
return result
return wrapper
class NormedLinear(nn.Module):
def __init__(self, in_features, out_features):
super(NormedLinear, self).__init__()
self.weight = Parameter(torch.Tensor(in_features, out_features))
self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
def forward(self, x):
out = nnF.normalize(x, dim=1).mm(nnF.normalize(self.weight, dim=0))
return out
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1./self.power)
out = x.div(norm)
return out
class AddProjector(nn.Module):
def __init__(self,backbone,proj_size=[512,512,512]):
super(AddProjector, self).__init__()
self.backbone = backbone
self.backbone.fc = nn.Identity()
proj_layer=[]
for i in range(len(proj_size) - 2):
proj_layer.append(nn.Linear(proj_size[i], proj_size[i + 1]))
proj_layer.append(nn.BatchNorm1d(proj_size[i + 1]))
proj_layer.append(nn.ReLU(inplace=True))
proj_layer.append(nn.Linear(proj_size[-2], proj_size[-1]))
proj_layer.append(nn.BatchNorm1d(proj_size[-1]))
self.projector = nn.Sequential(*proj_layer)
def forward(self, x):
out = self.backbone(x)
out = self.projector(out)
return out
class PredAndCLD(torch.nn.Module):
def __init__(self,pred_size=[512,128,512]):
super(PredAndCLD, self).__init__()
#branches for BYOL
self.predictor = nn.Sequential(
nn.Linear(pred_size[0], pred_size[1]),
nn.BatchNorm1d(pred_size[1]),
nn.ReLU(inplace=True),
nn.Linear(pred_size[1], pred_size[2]))
#branches for CLD
self.groupDis = nn.Sequential(
NormedLinear(pred_size[0], pred_size[1]*2),
Normalize(2))
def forward(self, x, online = True):
CLD = self.groupDis(x)
if online: #for online network only
pred = self.predictor(x)
return pred, CLD
return CLD
# exponential moving average
class EMA():
def __init__(self, beta):
super().__init__()
self.beta = beta
def update_average(self, old, new):
if old is None:
return new
return old * self.beta + (1 - self.beta) * new
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
def set_requires_grad(model, val):
for p in model.parameters():
p.requires_grad = val
def update_moving_average(ema_updater, ma_model, current_model):
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
old_weight, up_weight = ma_params.data, current_params.data
ma_params.data = ema_updater.update_average(old_weight, up_weight)
class CLD_Byol(nn.Module):
def __init__(self, backbone,predictor,CLD,moving_average_decay = 0.99):
super().__init__()
self.online_encoder = backbone
self.target_encoder = self._get_target_encoder()
self.CLD = CLD
self.predictor = predictor
self.target_ema_updater = EMA(moving_average_decay)
def _get_target_encoder(self):
target_encoder = copy.deepcopy(self.online_encoder)
set_requires_grad(target_encoder, False)
return target_encoder
def update_moving_average(self):
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
def loss_fn_SS(self,z1,z2): #z1 = (emb1,pred1) z2 = (emb2,pred2)
t1, p1 = z1
t2, p2 = z2
return 2 - nnF.cosine_similarity(p1, t2.detach(), dim=-1).mean() - nnF.cosine_similarity(p2, t1.detach(), dim=-1).mean()
def loss_fn_cld(self,z1,z2,cld_t=0.07): # z1 = (img1_online_cld,img1_target_cld) z2 = (img2_online_cld,img2_target_cld)
cluster_label1_1, centroids1_1 = KMeans(z1[0], K=clusters, Niters=num_iters)
cluster_label2_1, centroids2_1 = KMeans(z2[1], K=clusters, Niters=num_iters)
affnity1_1 = torch.mm(z1[0], centroids2_1.t())
affnity2_1 = torch.mm(z2[1], centroids1_1.t())
loss_CLD_1 = 0.5*(nnF.cross_entropy(affnity1_1.div_(cld_t), cluster_label2_1)+nnF.cross_entropy(affnity2_1.div_(cld_t), cluster_label1_1))
cluster_label1_2, centroids1_2 = KMeans(z1[1], K=clusters, Niters=num_iters)
cluster_label2_2, centroids2_2 = KMeans(z2[0], K=clusters, Niters=num_iters)
affnity1_2 = torch.mm(z1[1], centroids2_2.t())
affnity2_2 = torch.mm(z2[0], centroids1_2.t())
loss_CLD_2 = 0.5*(nnF.cross_entropy(affnity1_2.div_(cld_t), cluster_label2_2)+nnF.cross_entropy(affnity2_2.div_(cld_t), cluster_label1_2))
return 0.5*(loss_CLD_1+loss_CLD_2)
def forward(self, img1, img2,Lambda):
y1 = self.online_encoder(img1)
y2 = self.online_encoder(img2)
pred1, online_cld1 = self.predictor(y1)
pred2, online_cld2 = self.predictor(y2)
with torch.no_grad():
emb1 = self.target_encoder(img1)
emb2 = self.target_encoder(img2)
target_cld1 = self.predictor(emb1,online = False)
target_cld2 = self.predictor(emb2,online = False)
#target_cld1.detach_()
#target_cld2.detach_()
loss_SS = self.loss_fn_SS((emb1,pred1),(emb2,pred2))
if self.CLD:
loss_CLD = self.loss_fn_cld((online_cld1,target_cld1),(online_cld2,target_cld2))
else:
loss_CLD=torch.tensor(0)
loss= loss_SS+Lambda*loss_CLD
return loss, loss_SS, loss_CLD, y1, online_cld1
@torch.no_grad()
def infer(self,x):
return self.online_encoder(x)
class CLD_SimSiam(nn.Module):
def __init__(self, backbone,predictor,CLD):
super().__init__()
self.backbone = backbone
self.loss_fn_cld = nn.CrossEntropyLoss()
self.CLD = CLD
self.predictor = predictor
def loss_fn_SS(self,z1,z2):
t1, p1 = z1
t2, p2 = z2
return 2 - nnF.cosine_similarity(p1, t2.detach(), dim=-1).mean() - nnF.cosine_similarity(p2, t1.detach(), dim=-1).mean()
def forward(self, y1, y2,Lambda,cld_t=0.07):
y1 = self.backbone(y1)
y2 = self.backbone(y2)
z1_H,z1_L = self.predictor(y1)
z2_H,z2_L = self.predictor(y2)
loss_SS = self.loss_fn_SS((y1,z1_H),(y2,z2_H))
if self.CLD:
cluster_label1, centroids1 = KMeans(z1_L, K=clusters, Niters=num_iters)
cluster_label2, centroids2 = KMeans(z2_L, K=clusters, Niters=num_iters)
affnity1 = torch.mm(z1_L, centroids2.t())
affnity2 = torch.mm(z2_L, centroids1.t())
loss_CLD = 0.5*(self.loss_fn_cld(affnity1.div_(cld_t), cluster_label2)+self.loss_fn_cld(affnity2.div_(cld_t), cluster_label1))
else:
loss_CLD=torch.tensor(0)
loss= loss_SS+Lambda*loss_CLD
return loss, loss_SS, loss_CLD, z1_H, z1_L
@torch.no_grad()
def infer(self,x):
return self.backbone(x)
#################
###Infer loops###
#################
class ConvModelInfer():
def __init__(self,CheckpointDir=None,windowSize=16,BYOL = False):
ResNet = torchvision.models.resnet50(pretrained = False)
ResNetAndProj = AddProjector(ResNet,proj_size)
predictor = PredAndCLD(pred_size)
if BYOL:
self.model = CLD_Byol(ResNetAndProj,predictor,CLD)
else:
self.model = CLD_SimSiam(ResNetAndProj,predictor,CLD)
self.model.eval() ##always save and load under eval()
self.model.load_state_dict(torch.load(CheckpointDir))
device = torch.device('cuda')
self.model.to(device)
self.pooling = nn.AvgPool1d(windowSize,stride=windowSize)
def __call__(self,x,pool):
with torch.no_grad():
out = self.model.infer(x)
if pool != 0:
out = out.t_().unsqueeze_(0)
out = self.pooling(out)[0].t_()
return out