-
Notifications
You must be signed in to change notification settings - Fork 1
/
lorenz_model_noise.py
309 lines (261 loc) · 8.9 KB
/
lorenz_model_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import jax
import jax.numpy as jnp
import numpy as np
import haiku as hk
import optax
import os.path
import argparse
from functools import partial
# from tqdm.auto import tqdm
from data.utils import get_dataset
from data.lorenz_noise import generate_dataset
from encoder.utils import append_dzdt, concat_visible
from symder.sym_models import SymModel, Quadratic, rescale_z
from symder.symder import get_symder_apply, get_model_apply
from utils import loss_fn, init_optimizers, save_pytree # , load_pytree
def get_model(num_visible, num_hidden, num_der, dt, scale, get_dzdt=False):
# Define encoder
hidden_size = 128
pad = 4
def encoder(x):
return hk.Sequential(
[
hk.Conv1D(hidden_size, kernel_shape=9, padding="VALID"),
jax.nn.relu,
hk.Conv1D(hidden_size, kernel_shape=1),
jax.nn.relu,
hk.Conv1D(num_hidden, kernel_shape=1),
]
)(x)
encoder = hk.without_apply_rng(hk.transform(encoder))
encoder_apply = append_dzdt(encoder.apply) if get_dzdt else encoder.apply
encoder_apply = concat_visible(
encoder_apply, visible_transform=lambda x: x[:, pad:-pad]
)
# Define symbolic model
n_dims = num_visible + num_hidden
scale_vec = jnp.concatenate((scale[:, 0], jnp.ones(num_hidden)))
@partial(rescale_z, scale_vec=scale_vec)
def sym_model(z, t):
return SymModel(
1e2 * dt,
(
hk.Linear(n_dims, w_init=jnp.zeros, b_init=jnp.zeros),
Quadratic(n_dims, init=jnp.zeros),
),
)(z, t)
sym_model = hk.without_apply_rng(hk.transform(sym_model))
# Define SymDer function which automatically computes
# higher order time derivatives of symbolic model
symder_apply = get_symder_apply(
sym_model.apply,
num_der=num_der,
transform=lambda z: z[..., :num_visible],
get_dzdt=get_dzdt,
)
# Define full model, combining encoder and symbolic model
model_apply = get_model_apply(
encoder_apply,
symder_apply,
hidden_transform=lambda z: z[..., -num_hidden:],
get_dzdt=get_dzdt,
)
model_init = {"encoder": encoder.init, "sym_model": sym_model.init}
return model_apply, model_init, {"pad": pad}
def train(
n_steps,
model_apply,
params,
scaled_data,
loss_fn_args={},
data_args={},
optimizers={},
sparse_thres=None,
sparse_interval=None,
key_seq=hk.PRNGSequence(42),
):
# JIT compile gradient function
loss_fn_apply = partial(loss_fn, model_apply, **loss_fn_args)
grad_loss = jax.jit(jax.grad(loss_fn_apply, has_aux=True))
# Initialize sparse mask
sparsify = sparse_thres is not None and sparse_interval is not None
sparse_mask = jax.tree_map(
lambda x: jnp.ones_like(x, dtype=bool), params["sym_model"]
)
# # TEMPORARY: Init mask
# flat_mask, tree = jax.tree_flatten(sparse_mask)
# flat_mask[0] = jnp.array([False, False, True])
# flat_mask[1] = jnp.array(
# [[True, True, False], [True, True, False], [False, False, True]]
# )
# flat_mask[2] = jnp.array(
# [
# [[False, False, False], [False, False, False], [False, False, False]],
# [[False, False, True], [False, False, False], [False, False, False]],
# [[False, True, False], [False, False, False], [False, False, False]],
# ]
# )
# sparse_mask = jax.tree_unflatten(tree, flat_mask)
# Initialize optimizers
update_params, opt_state = init_optimizers(params, optimizers, sparsify)
update_params = jax.jit(update_params)
# Get batch and target
# TODO: replace this with call to a data generator/data loader
if loss_fn_args["reg_dzdt"] is not None:
batch = scaled_data[None, :, :, :2] # batch, time, num_visible, 2
else:
batch = scaled_data[None, :, :, 0] # batch, time, num_visible
pad = data_args["pad"]
# batch, time, num_visible, num_der
target = scaled_data[None, pad:-pad, :, 1:]
batch = jnp.asarray(batch)
target = jnp.asarray(target)
# Training loop
print(f"Training for {n_steps} steps...")
best_loss = np.float("inf")
best_params = None
for step in range(n_steps):
# Compute gradients and losses
grads, loss_list = grad_loss(params, batch, target)
# Save best params if loss is lower than best_loss
loss = loss_list[0]
if loss < best_loss:
best_loss = loss
best_params = jax.tree_map(lambda x: x.copy(), params)
# Update sparse_mask based on a threshold
if sparsify and step > 0 and step % sparse_interval == 0:
sparse_mask = jax.tree_map(
lambda x: jnp.abs(x) > sparse_thres, best_params["sym_model"]
)
# Update params based on optimizers
params, opt_state, sparse_mask = update_params(
grads, opt_state, params, sparse_mask
)
# Print loss
if step % 1000 == 0:
loss, mse, reg_dzdt, reg_l1_sparse = loss_list
print(
f"Loss[{step}] = {loss}, MSE = {mse}, "
f"Reg. dz/dt = {reg_dzdt}, Reg. L1 Sparse = {reg_l1_sparse}"
)
print(params["sym_model"])
print("\nBest loss:", best_loss)
print("Best sym_model params:", best_params["sym_model"])
return best_loss, best_params, sparse_mask
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run SymDer model on Lorenz system data with added noise."
)
parser.add_argument(
"-o",
"--output",
type=str,
default="./lorenz_noise_run0/",
help="Output folder path. Default: ./lorenz_noise_run0/",
)
parser.add_argument(
"-d",
"--dataset",
type=str,
default="./data/lorenz_noise.npz",
help=(
"Path to Lorenz system dataset (generated and saved "
"if it does not exist). Default: ./data/lorenz_noise.npz"
),
)
parser.add_argument(
"-v",
"--visible",
type=int,
nargs="+",
default=[0, 1],
help="List of visible variables (0, 1, and/or 2). Default: 0 1",
)
parser.add_argument(
"--noise",
type=float,
default=0.0,
help="Gaussian noise standard deviation. Default: 0.0",
)
parser.add_argument(
"--smooth",
type=int,
nargs="+",
default=None,
help="Smoothing window size, polynomial order. Default: None",
)
args = parser.parse_args()
# Seed random number generator
key_seq = hk.PRNGSequence(42)
# Set SymDer parameters
num_visible = len(args.visible) # 2
num_hidden = 3 - num_visible # 1
num_der = 2
# Set dataset parameters and load/generate dataset
dt = 1e-2
tmax = 100 + 2 * dt
scaled_data, scale, raw_sol = get_dataset(
args.dataset,
generate_dataset,
get_raw_sol=True,
dt=dt,
tmax=tmax,
num_visible=num_visible,
visible_vars=args.visible,
num_der=num_der,
noise=args.noise,
smoothing_params=args.smooth,
)
# Set training hyperparameters
n_steps = 50000
sparse_thres = 1e-3
sparse_interval = 5000
# Define optimizers
optimizers = {
"encoder": optax.adabelief(1e-3, eps=1e-16),
"sym_model": optax.adabelief(1e-3, eps=1e-16),
}
# Set loss function hyperparameters
loss_fn_args = {
"scale": jnp.array(scale),
"deriv_weight": jnp.array([1.0, 1.0]),
"reg_dzdt": 0,
"reg_l1_sparse": 0,
}
get_dzdt = loss_fn_args["reg_dzdt"] is not None
# Check dataset shapes
assert scaled_data.shape[-2] == num_visible
assert scaled_data.shape[-1] == num_der + 1
assert scale.shape[0] == num_visible
assert scale.shape[1] == num_der + 1
# Define model
model_apply, model_init, model_args = get_model(
num_visible, num_hidden, num_der, dt, scale, get_dzdt=get_dzdt
)
# Initialize parameters
params = {}
params["encoder"] = model_init["encoder"](
next(key_seq), jnp.ones([1, scaled_data.shape[0], num_visible])
)
params["sym_model"] = model_init["sym_model"](
next(key_seq), jnp.ones([1, 1, num_visible + num_hidden]), 0.0
)
# Train
best_loss, best_params, sparse_mask = train(
n_steps,
model_apply,
params,
scaled_data,
loss_fn_args=loss_fn_args,
data_args={"pad": model_args["pad"]},
optimizers=optimizers,
sparse_thres=sparse_thres,
sparse_interval=sparse_interval,
key_seq=key_seq,
)
# Save model parameters and sparse mask
print(f"Saving best model parameters in output folder: {args.output}")
save_pytree(
os.path.join(args.output, "best.pt"),
{"params": best_params, "sparse_mask": sparse_mask},
)