forked from volpino/wiki-network
-
Notifications
You must be signed in to change notification settings - Fork 3
/
pywc_plot.py
executable file
·308 lines (276 loc) · 12.8 KB
/
pywc_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/env python
##########################################################################
# #
# This program is free software; you can redistribute it and/or modify #
# it under the terms of the GNU General Public License as published by #
# the Free Software Foundation; version 2 of the License. #
# #
# This program is distributed in the hope that it will be useful, #
# but WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
# GNU General Public License for more details. #
# #
##########################################################################
import matplotlib
matplotlib.use("pdf")
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import matplotlib.dates as md
from datetime import datetime as dt
from datetime import timedelta
import time
import csv
import numpy as np
import sys
import logging
from sonet.timr import Timr
from sonet.mediawiki import ts2dt
# Quite ugly, if it's possible use groupby
# [list(e) for k,e in groupby([11,12,13,21],(lambda x : x//10 ))]
def collapse_values(timestamps, values, totals, radius):
"""
Function that collapses timestamps and values in a time window
>>> t = [dt(2011, 01, 20, 0, 0), dt(2011, 01, 20, 0, 0), \
dt(2011, 01, 22, 0, 0), dt(2011, 01, 23, 0, 0), \
dt(2011, 01, 28, 0, 0), dt(2011, 01, 30, 0, 0), \
dt(2011, 01, 31, 0, 0)]
>>> v = [1,2,3,4,5,6,7]
>>> tot = [2,3,4,5,6,7,8]
>>> collapse_values(t, v, tot, 2)
([datetime.datetime(2011, 1, 20, 0, 0), datetime.datetime(2011, 1, 23, 0, 0), datetime.datetime(2011, 1, 28, 0, 0), datetime.datetime(2011, 1, 31, 0, 0)], [3, 7, 5, 13], [5, 9, 6, 15])
>>> collapse_values(t, v, tot, 4)
([datetime.datetime(2011, 1, 23, 0, 0), datetime.datetime(2011, 1, 31, 0, 0)], [10, 18], [14, 21])
>>> collapse_values(t, v, tot, 999)
([datetime.datetime(2011, 1, 31, 0, 0)], [28], [35])
"""
if not radius > 0:
raise ValueError("Radius must be > 0")
time = []
ser = []
tot = []
delta = timedelta(days=radius)
first = timestamps[0]
curr = []
i = 0
for j in timestamps:
if (j.date() - first.date()) < delta:
curr.append(j)
else:
try:
time.append(curr[-1]) # Use last timestamp of the group
# Sum values and totals of the current group
ser.append(sum(values[i - len(curr):i]))
tot.append(sum(totals[i - len(curr):i]))
except IndexError:
time.append(j)
ser.append(values[i])
tot.append(totals[i])
curr = [j]
first = j
i += 1
time.append(curr[-1])
ser.append(sum(values[i - len(curr):i]))
tot.append(sum(totals[i - len(curr):i]))
return time, ser, tot
def dt_average(timestamps):
acc = 0
for ts in timestamps:
acc += time.mktime(ts.timetuple())
return dt.fromtimestamp(acc / len(timestamps))
def smooth_values(timestamps, values, totals, radius):
"""
Sliding window
>>> t = [dt(2011, 01, 20, 0, 0), dt(2011, 01, 21, 0, 0), \
dt(2011, 01, 22, 0, 0), dt(2011, 01, 23, 0, 0), \
dt(2011, 01, 28, 0, 0), dt(2011, 01, 30, 0, 0), \
dt(2011, 01, 31, 0, 0)]
>>> v = [1,2,3,4,5,6,7]
>>> tot = [2,3,4,5,6,7,8]
>>> smooth_values(t, v, tot, 3)
([datetime.datetime(2011, 1, 20, 0, 0), datetime.datetime(2011, 1, 20, 12, 0), datetime.datetime(2011, 1, 21, 0, 0), datetime.datetime(2011, 1, 22, 0, 0), datetime.datetime(2011, 1, 24, 8, 0), datetime.datetime(2011, 1, 27, 0, 0), datetime.datetime(2011, 1, 29, 16, 0), datetime.datetime(2011, 1, 30, 12, 0), datetime.datetime(2011, 1, 31, 0, 0)], [1, 3, 6, 9, 12, 15, 18, 13, 7], [2, 5, 9, 12, 15, 18, 21, 15, 8])
"""
time = []
ser = []
tot = []
k = radius / 2
for i in range(-(radius / 2 + 1), len(timestamps) - (radius / 2) + 1):
v = i if i > 0 else 0
time.append(dt_average(timestamps[v:v + k]))
ser.append(sum(values[v:v + k]))
tot.append(sum(totals[v:v + k]))
if k < radius:
k += 1
return time, ser, tot
def _gen_data(line, id_col, ignorecols, onlycols):
"""
Generator to extract only desired columns from csv content
"""
for i, elem in enumerate(line):
if i != id_col and \
(not ignorecols or not i in ignorecols) and \
(not onlycols or i in onlycols) and \
i != len(line) - 1 and \
i != len(line) - 2: # don't count last two cols
yield elem
def calc_perc(x, tot):
try:
return float(x) / float(tot)
except ZeroDivisionError:
return 0
def main():
import optparse
from sonet.lib import SonetOption
p = optparse.OptionParser(
usage="usage: %prog [options] input_file output_file",
option_class=SonetOption)
p.add_option('-v', action="store_true", dest="verbose", default=False,
help="Verbose output")
p.add_option('-i', '--ignorecols', action="store", dest="ignorecols",
help="Columns numbers of the source file to ignore"
"(comma separated and starting from 0)")
p.add_option('-I', '--id', action="store", dest="id_col", type="int",
help="Id column number (starting from 0)", default=0)
p.add_option('-o', '--onlycols', action="store", dest="onlycols",
help="Select only this set of columns" + \
"(comma separated and starting from 0)")
p.add_option('-p', '--percentages', action="store_true", dest="perc",
help="Use percentages instead of absolute value")
p.add_option('-w', '--window', action="store", dest="window", type=int,
help="Collapse days")
p.add_option('-S', '--sliding', action="store", dest="smooth", type=int,
help="Sliding window")
p.add_option('--exclude-less-than', action="store",
dest="excludelessthan", type=int,
help="Exclude lines with totals (or dic if -d option is used) " + \
"smaller than this parameter")
p.add_option('--exclude-more-than', action="store",
dest="excludemorethan", type=int,
help="Exclude lines with totals (or dic if -d option is used) " + \
"greater than this parameter")
p.add_option('-s', '--start', action="store",
dest='start', type="yyyymmdd", metavar="YYYYMMDD", default=None,
help="Look for revisions starting from this date")
p.add_option('-e', '--end', action="store",
dest='end', type="yyyymmdd", metavar="YYYYMMDD", default=None,
help="Look for revisions until this date")
p.add_option('-d', '--dic', action="store_true", dest="dic", default=False,
help="Calculate percentage over dic column instead of total")
opts, files = p.parse_args()
if len(files) != 2:
p.error("Wrong parameters")
if opts.verbose:
logging.basicConfig(stream=sys.stderr,
level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')
csv_reader = csv.reader(open(files[0]), delimiter="\t")
onlycols = None
ignorecols = None
if opts.onlycols:
onlycols = [int(x) for x in opts.onlycols.split(",")]
if opts.ignorecols:
ignorecols = [int(x) for x in opts.ignorecols.split(",")]
# content contains all the csv file
content = [row for row in csv_reader]
# CSV header, only of interesting columns
header = [x for x in _gen_data(content[0], opts.id_col,
ignorecols, onlycols)]
# Creates a matrix (list) with percentages of the occurrencies of every
# category. Don't count id, total, text, ignore columns. If onlycols is set
# consider only them.
mat = []
timestamps = []
totals = []
tot_index = -2
if opts.dic:
tot_index = -4
for line in content[1:]:
#filter only pages with total (or dic is -d) greater or smaller than X
if opts.excludemorethan:
if float(line[tot_index]) > opts.excludemorethan:
continue
if opts.excludelessthan:
if float(line[tot_index]) < opts.excludelessthan:
continue
mat.append([x for x in _gen_data(line, opts.id_col,
ignorecols, onlycols)])
totals.append(float(line[tot_index]))
timestamps.append(ts2dt(line[opts.id_col]))
del content
mat = np.array(mat, dtype=np.float).transpose()
logging.info("Input file read. Ready to plot")
pdf_pag = PdfPages(files[1])
with Timr("Plotting"):
for i, series in enumerate(mat):
logging.info("Plotting page %d", i + 1)
# Don't plot zeros and skip zero revisions!
#ser = [x for x in series if x != 0]
#time = [x for k, x in enumerate(timestamps) if series[k] != 0]
#tot = [x for k, x in enumerate(totals) if series[k] != 0]
ser = [x for k, x in enumerate(series) \
if (not opts.start or timestamps[k] >= opts.start) and \
(not opts.end or timestamps[k] <= opts.end)]
time = [x for k, x in enumerate(timestamps) \
if (not opts.start or x >= opts.start) and \
(not opts.end or x <= opts.end)]
tot = [x for k, x in enumerate(totals) \
if (not opts.start or timestamps[k] >= opts.start) and \
(not opts.end or timestamps[k] <= opts.end)]
if opts.smooth and len(time) and len(ser) and len(tot):
time, ser, tot = smooth_values(time, ser, tot,
opts.smooth)
if opts.window and len(time) and len(ser) and len(tot):
time, ser, tot = collapse_values(time, ser, tot,
opts.window)
mean = float(sum(series)) / len(series)
#rel_mean is the mean for the period [opts.end, opts.start]
rel_mean = float(sum(ser)) / len(ser)
if opts.perc:
try:
mean = float(sum(series)) / sum(totals)
rel_mean = float(sum(ser)) / sum(tot)
except ZeroDivisionError:
mean = 0
rel_mean = 0
# Calculate percentages
ser = [calc_perc(x, tot[k]) for k, x in enumerate(ser)]
# Set axis limit 0-1 IS IT GOOD OR BAD?
#axis.set_ylim(0, 1)
plt.ylabel("%")
first_time = time[0].date()
last_time = time[-1].date()
plt.clf()
plt.subplots_adjust(bottom=0.25)
plt.xticks(rotation=90)
fig = plt.gcf()
fig.set_size_inches(11.7, 8.3)
axis = plt.gca()
axis.xaxis.set_major_formatter(md.DateFormatter('%Y-%m-%d'))
axis.set_xlim(matplotlib.dates.date2num(first_time),
matplotlib.dates.date2num(last_time))
if last_time - first_time < timedelta(days=30):
axis.xaxis.set_major_locator(md.DayLocator(interval=1))
axis.xaxis.set_minor_locator(md.DayLocator(interval=1))
else:
axis.xaxis.set_minor_locator(md.MonthLocator(interval=1))
#auto_loc = md.AutoDateLocator(minticks=8, maxticks=12, interval_multiples=True)
#auto_loc.intervald[md.MONTHLY] = [6]
rule = md.rrulewrapper(md.MONTHLY, interval=4)
auto_loc = md.RRuleLocator(rule)
axis.xaxis.set_major_locator(auto_loc)
axis.tick_params(labelsize='x-small')
plt.xlabel("Revisions Timestamp")
if len(time) and len(ser):
if opts.window:
time = [t.date() for t in time]
logging.info("Mean: %f", mean)
logging.info("Relative Mean: %f", rel_mean)
if header[i] == "negemo" or header[i] == "posemo":
print ser # ONLY FOR TESTING, FIXME WHEN FINISHED
plt.plot(matplotlib.dates.date2num(time), ser, "b.-")
plt.axhline(y=mean, color="r")
plt.title("%s - Mean: %.5f - Relative mean: %.5f" % (header[i], round(mean, 5), round(rel_mean, 5)))
pdf_pag.savefig()
pdf_pag.close()
if __name__ == "__main__":
main()