-
Notifications
You must be signed in to change notification settings - Fork 8
/
data.py
775 lines (663 loc) · 38 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
import json
import os
import sys
import copy
import math
import random
import numpy as np
from collections import defaultdict
from datasets import load_dataset, load_from_disk
from torch.utils.data import Dataset
from tqdm import tqdm
from transformers import AutoTokenizer
import re
from utils import calculate_metrics, parse_output, parse_rankings, calculate_retrieval_metrics
import logging
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def filter_contexts(data):
# filter the contexts and only keep the ones that contain the answer
new_data = []
for d in data:
d = copy.deepcopy(d)
d["ctxs"] = [ctx for ctx in d["ctxs"] if ctx["has_answer"]]
if len(d["ctxs"]) > 0:
d["gold_doc"] = d["ctxs"][0]["text"]
d["gold_title"] = d["ctxs"][0]["title"]
new_data.append(d)
return new_data
def drop_duplicates(data, key="id"):
indices_to_keep = []
keys = set()
for i, d in enumerate(data):
if d[key] in keys:
continue
indices_to_keep.append(i)
keys.add(d[key])
data = data.select(indices_to_keep)
return data
def load_qa(dataset, path, demo_path, max_test_samples=None, popularity_threshold=None, shots=0):
"""
Load the data for QA tasks
"""
if "nq_bad" in dataset:
user_template = "Use the given documents to write a concise and short answer to the question. Only use the information presented in the documents, and output 'unanswerable' if the question is not valid or cannot be answered with the given document. Write your answer in the following format:\nAnswer: [answer]\n\n{demos}{context}\n\nQuestion: {question}"
else:
user_template = "Use the given documents to write a concise and short answer to the question. Write your answer in the following format:\nAnswer: [answer]\n\n{demos}{context}\n\nQuestion: {question}"
system_template = "Answer:"
prompt_template = user_template + "\n" + system_template
if path.endswith(".json"):
data = load_dataset("json", data_files=path, field="data")["train"]
elif path.endswith(".jsonl"):
data = load_dataset("json", data_files=path)["train"]
else:
data = load_from_disk(path)
return {"data": data, "prompt_template": prompt_template, "user_template": user_template, "system_template": system_template}
if demo_path.endswith(".json"):
if "nq_bad" in dataset:
with open(demo_path) as f:
demo_data = json.load(f)
else:
demo_data = load_dataset("json", data_files=demo_path, field="data")["train"]
else:
demo_data = load_dataset("json", data_files=demo_path)["train"]
# popularity filtering for popqa
if "popqa" in dataset and popularity_threshold is not None:
data = data.filter(lambda x: math.log10(x['s_pop']) < popularity_threshold)
demo_data = demo_data.filter(lambda x: math.log10(x['s_pop']) < popularity_threshold)
key = "id" if "id" in data.column_names else "question"
if max_test_samples is not None:
# some datasets do not have id (e.g., nq), so we assume unique questions
keys = set(data[key])
keys = random.sample(sorted(keys), min(max_test_samples, len(keys)))
data = data.filter(lambda x: x[key] in keys)
# demo_template = "Document (Title: {gold_title}): {gold_doc}\n\nQuestion: {question}\nAnswer: {answer}"
demo_template = "{documents}\n\nQuestion: {question}\nAnswer: {answer}"
passage_template = "Document (Title: {title}): {text}"
def update(sample):
demos = demo_data
demo_text = ""
if shots > 0:
if 'popqa' in dataset:
# popqa only has one split
demos = demo_data.filter(lambda x: x[key] != sample[key])
# seed ensures that we get the same demos for the same question
demos = demos.shuffle(seed=abs(hash(sample[key])) % (2**31))
demos = drop_duplicates(demos, key).select(range(shots))
demo_text = "\n\n".join([demo_template.format(**d, documents="\n\n".join([passage_template.format(**c) for c in d["ctxs"]]), answer=d["answers"][0]) for d in demos]) + "\n\n"
passage_text = ""
if len(sample['ctxs']) > 0:
passage_text = "\n\n".join([passage_template.format(**c) for c in sample['ctxs']])
return {"demos": demo_text, "context": passage_text, "answer": sample["answers"]}
data = data.map(update)
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
}
def load_json_kv(path, shots, max_test_samples=None, seed=42):
# prompt from https://github.com/nelson-liu/lost-in-the-middle/blob/main/src/lost_in_the_middle/prompts/kv_retrieval.prompt
user_template = "{context}\n\nExtract the value corresponding to the specified key in the JSON object below.\n\n{demos}Key: {question}"
system_template = "Corresponding value:"
prompt_template = user_template + "\n" + system_template
if path.endswith(".json"):
data = load_dataset("json", data_files=path, field="data")["train"]
elif path.endswith(".jsonl"):
data = load_dataset("json", data_files=path)["train"]
else:
data = load_from_disk(path)
return {"data": data, "prompt_template": prompt_template, "user_template": user_template, "system_template": system_template}
demo_template = "Key: {key}\nCorresponding value:{value}"
data = data.map(lambda x: {
"demos": "\n\n".join([demo_template.format(key=key, value=" "+value) for key, value in x["demos"][:shots]]) + ("\n\n" if shots > 0 else ""),
"k": x["num_kvs"],
})
if max_test_samples is not None:
data = data.shuffle(seed=seed).select(range(min(max_test_samples, len(data))))
def post_process(output, example):
prediction = output["output"]
answer = example["answer"]
mets = calculate_metrics(prediction, answer)
# we don't really need to parse because we ues substring em, but could be nice to see how precise the model is
parsed_pred = parse_output(prediction, "corresponding value:")
new_mets = calculate_metrics(parsed_pred, answer)
mets = {k: max(v, new_mets[k]) for k, v in mets.items()}
return mets, {"parsed_output": parsed_pred}
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
"post_process": post_process,
}
def truncate_llama2(dataset, data, postfix_text=" ... [the rest of the text is omitted]"):
# use the llama 2 tokenizer to truncate to max_length, which only applies to the main document (context) and exclude the instructions and the demos
# this is to make sure that every model see the same amount of information
max_length = int(dataset.split("_")[-1])
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
separator_length = len(tokenizer(postfix_text)["input_ids"])
def truncate(sample):
# tokens = tokenizer(sample["context"], max_length=max_length, truncation=True, return_offsets_mapping=True)
tokens = tokenizer(sample["context"], return_offsets_mapping=True)
if len(tokens["input_ids"]) > max_length:
# we need to truncate
sample["context"] = sample["context"][:tokens["offset_mapping"][max_length-separator_length][1]] + postfix_text
return sample
return data.map(truncate, num_proc=16)
def load_narrativeqa(dataset, path=None, shots=0, max_samples=None, seed=42):
user_template = "You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible.\n\n{demo}{context}\n\nQuestion: {question}"
system_template = "Answer:"
prompt_template = user_template + "\n" + system_template
if path is not None and path != "":
data = load_from_disk(path)
else:
all_data = load_dataset("narrativeqa")
data = all_data["test"].shuffle(seed=seed)
if max_samples is not None:
data = data.select(range(min(max_samples, len(data))))
data = data.map(lambda example: {
"context": example["document"]["text"],
"question": example["question"]["text"],
"answer": [ex["text"] for ex in example["answers"]],
"demo": "" if shots == 0 else "For example:\n\n" + "\n\n".join([f"Question: {ex['question']['text']}\nAnswer: {ex['answers'][0]['text']}" for ex in all_data["train"].shuffle().select(range(shots))]) + "\n\nNow, use the following story to answer the question:\n\n"
}, remove_columns=["document", "answers"])
data = truncate_llama2(dataset, data)
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
}
def drop_duplicates_in_input(untokenized_dataset):
# https://github.com/tau-nlp/scrolls/blob/bfc0da0747976418cd0c4b8837db023ea567ba84/evaluator/dataset_evaluator.py#L107
indices_to_keep = []
id_to_idx = {}
outputs = []
for i, (id_, output) in enumerate(zip(untokenized_dataset["id"], untokenized_dataset["output"])):
if id_ in id_to_idx:
outputs[id_to_idx[id_]].append(output)
continue
indices_to_keep.append(i)
id_to_idx[id_] = len(outputs)
outputs.append([output])
untokenized_dataset = untokenized_dataset.select(indices_to_keep).flatten_indices()
untokenized_dataset = untokenized_dataset.remove_columns("output")
untokenized_dataset = untokenized_dataset.add_column("outputs", outputs)
return untokenized_dataset
def load_qasper(dataset, path=None, shots=0, max_samples=None, seed=42):
user_template = 'You are given a scientific article and a question. Answer the question as concisely as you can, using a single phrase or sentence if possible. If the question cannot be answered based on the information in the article, write "unanswerable". If the question is a yes/no question, answer "yes", "no", or "unanswerable".\n\n{demo}{context}\n\nQuestion: {question}'
system_template = "Answer:"
prompt_template = user_template + "\n" + system_template
if path is not None and path != "":
data = load_from_disk(path)
else:
# instead of using allenai/qasper, we use tau/scrolls, because it's nicely preprocessed
# but the instructions are from zeroscrolls
all_data = load_dataset("tau/scrolls", "qasper")
data = drop_duplicates_in_input(all_data["validation"]).shuffle(seed=seed)
train_data = drop_duplicates_in_input(all_data["train"])
if max_samples is not None:
data = data.select(range(min(max_samples, len(data))))
data = data.map(lambda example: {
"context": example["input"][example["input"].index("\n\n")+2:].strip(),
"question": example["input"][:example["input"].index("\n\n")].strip(),
"answer": example["outputs"],
# "demo": "" if shots == 0 else "\n\n".join(["[Text omitted]\n\nQuestion: {}\nAnswer: {}".format(ex['input'][:ex['input'].index('\n\n')].strip(), ex['outputs'][0]) for ex in train_data.shuffle().select(range(shots))]) + "\n\n"
"demo": "" if shots == 0 else "For example:\n\n" + "\n\n".join(["Question: {}\nAnswer: {}".format(ex['input'][:ex['input'].index('\n\n')].strip(), ex['outputs'][0]) for ex in train_data.shuffle().select(range(shots))]) + "\n\nNow, use the following article to answer the question:\n\n"
}, remove_columns=["outputs"])
data = truncate_llama2(dataset, data)
return {"data": data, "prompt_template": prompt_template, "user_template": user_template, "system_template": system_template}
def load_multi_lexsum(dataset, path=None, shots=0, max_samples=None, seed=42):
all_data = load_dataset("allenai/multi_lexsum", name="v20230518")
all_data = all_data.filter(lambda x: x["summary/short"] is not None)
user_template = "You are given the legal documents in a civil rights lawsuit, and you are tasked to summarize the case. Write a concise summary of one paragraph (200 to 250 words). The summary should contain a short description of the background, the parties involved, and the outcomes of the case.\n\n{demo}Legal documents:\n{context}\n\nNow please summarize the case."
system_template = "Summary:"
prompt_template = user_template + "\n\n" + system_template
train_data = all_data["train"]
all_data = all_data.map(lambda x: {
"context": '\n\n'.join(x["sources"]),
"demo": "" if shots == 0 else "Example summaries:\n\n" + "\n\n".join(["Summary: {}".format(ex["summary/short"]) for ex in train_data.shuffle().select(range(shots))]) + "\n\nNow, write a summary of the following legal documents.\n",
"answer": x["summary/short"],
"question": "",
})
all_data = truncate_llama2(dataset, all_data)
test_data = all_data["validation"]
def post_process(output, example):
prediction = output["output"]
answer = example["answer"]
mets = calculate_metrics(prediction, answer)
# we don't really need to parse because we ues substring em, but could be nice to see how precise the model is
parsed_pred = parse_output(prediction, system_template)
if parsed_pred is not None:
new_mets = calculate_metrics(parsed_pred, answer)
mets = {k: max(v, new_mets[k]) for k, v in mets.items()}
return mets, {"parsed_output": parsed_pred}
if max_samples is not None and len(test_data) > max_samples:
test_data = test_data.shuffle(seed=seed).select(range(max_samples))
return {
"data": test_data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
"post_process": post_process,
}
def load_msmarco_rerank(path, demo_path=None, max_test_samples=None, shots=0, seed=42):
random.seed(seed)
user_template = "You are provided with a list of documents, each indicated by their ID. Rank each document based on their relevance to the question in descending order from most relelvant to least relevant texts. Include all documents in the rankings. Write your answer using the unique IDs, with the following format:\nRanking: ID3 > ID1 > ID2\n\n{demos}{context}\n\nQuery: {question}"
system_template = "Ranking:"
prompt_template = user_template + "\n" + system_template
if path.endswith(".jsonl"):
# we have preprocessed it into a jsonl file
data = load_dataset("json", data_files=path)["train"]
else:
data = load_from_disk(path)
demos = load_dataset("json", data_files=demo_path)["train"]
if max_test_samples is not None:
key = "qid" if "qid" in data.column_names else "query"
keys = set(data[key])
keys = random.sample(sorted(keys), min(max_test_samples, len(keys)))
data = data.filter(lambda x: x[key] in keys)
# the k values are used to calculate metrics later
k_values = [1, 5, 10, 20, 50, 100, 200, 500, 1000]
k_values = [k for k in k_values if k <= len(data[0]["ctxs"])]
# could also do this question by question, but not necessary if we are sampling
demo_filtered = False
if len(demos) > 2*len(data):
qids = set(data["qid"])
demos = demos.filter(lambda x: x["qid"] not in qids)
demo_filtered = True
def update(sample, demos):
passage_text = ""
passage_template = "[ID: {id}] Document (Title: {title}): {text}" if "title" in sample["ctxs"][0] else "[ID: {id}] Document: {text}"
passage_text = "\n\n".join([passage_template.format(**c) for c in sample['ctxs']])
gold_ranking = " > ".join([x['id'] for x in sorted(sample["ctxs"], key=lambda x: x["label"], reverse=True)])
demo_text = ""
if shots > 0:
# need to make sure we don't pick the same question as the demos
if not demo_filtered:
demos = demos.filter(lambda x: x["qid"] != sample["qid"])
demo = demos.shuffle(seed=abs(hash(sample["qid"])) % (2**31))
demo = drop_duplicates(demo, 'qid').select(range(shots))
demo_ids = set()
for d in demo:
if d["qid"] in demo_ids or len(demo_ids) >= shots:
continue
demo_ids.add(d["qid"])
# sort ids by label
ids = sorted(d["ctxs"], key=lambda x: x["label"], reverse=True)
ranking = " > ".join([x['id'] for x in ids])
demo_text += "\n\n".join([passage_template.format(**c) for c in d['ctxs']]) + f"\n\nQuery: {d['query']}\nRanking: {ranking}" + "\n\n"
qrel = [[c['id'], str(c['label'])] for c in sample["ctxs"]]
return {"context": passage_text, "question": sample["query"], "demos": demo_text, "answer": gold_ranking, "qrel": qrel}
data = data.map(lambda x: update(x, demos), remove_columns=["query", "ctxs"])
def post_process(output, example):
parsed_pred = parse_rankings(output["output"])
o = {"parsed_output": parsed_pred}
qrels = {example["qid"]: {c[0]: int(c[1]) for c in example["qrel"]}}
mets = calculate_retrieval_metrics(results={example['qid']: parsed_pred}, qrels=qrels, k_values=k_values)
mets = {**mets, "num_preds": len(parsed_pred)}
return mets, o
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
"k_values": k_values,
"post_process": post_process,
}
def load_icl(dataset, max_test_sample=None, seed=42):
shot = int(dataset.split("shot")[0].split("_")[-1])
if "trec_fine" in dataset.lower():
train_data = load_dataset("CogComp/trec", trust_remote_code=True)["train"]
test_data = load_dataset("CogComp/trec", trust_remote_code=True)["test"]
id2label = train_data.features['fine_label'].names
text_field = "text"
label_field = "fine_label"
num_labels = 50
elif "trec_coarse" in dataset.lower():
train_data = load_dataset("CogComp/trec", trust_remote_code=True)["train"]
test_data = load_dataset("CogComp/trec", trust_remote_code=True)["test"]
id2label = train_data.features['coarse_label'].names
text_field = "text"
label_field = "coarse_label"
num_labels = 6
elif "banking77" in dataset.lower():
train_data = load_dataset("PolyAI/banking77", trust_remote_code=True)["train"]
test_data = load_dataset("PolyAI/banking77", trust_remote_code=True)["test"]
id2label = train_data.features["label"].names
id2label = {i: id2label[i] for i in range(len(id2label))}
text_field = "text"
label_field = "label"
num_labels = 77
elif "clinic150" in dataset.lower():
train_data = load_dataset("clinc_oos", "plus")["train"]
test_data = load_dataset("clinc_oos", "plus")["validation"]
id2label = train_data.features["intent"].names
text_field = "text"
label_field = "intent"
num_labels = 151
elif "nlu" in dataset.lower():
data = load_dataset("xingkunliuxtracta/nlu_evaluation_data", trust_remote_code=True)["train"]
id2label = data.features["label"].names
data = data.train_test_split(test_size=0.1, seed=seed)
train_data = data["train"]
test_data = data["test"]
text_field = "text"
label_field = "label"
num_labels = 68
else:
raise NotImplementedError(f"Unknown ICL dataset")
def balance_labels(data, shots):
# for each data point, we are going to sample a random set of demos with balanced labels
# there are two places where randomness is involved: the selection of the demos and the final shuffle
rand = random.Random(seed)
label_mapping = {x[label_field]: [] for x in data}
for x in data:
label_mapping[x[label_field]].append(x)
# rearrange the data such that every label has the same number of samples
# they are also in consecutive sets with random order in each set
num_rounds = math.ceil(shots / len(label_mapping))
new_data = [[] for _ in range(num_rounds)]
for _, samples in label_mapping.items():
indices = rand.sample(range(len(samples)), num_rounds % len(samples))
while len(indices) < num_rounds:
# sample with replacement if necessary, shouldn't happen unless we have very many shots
indices += rand.sample(range(len(samples)), min(num_rounds - len(indices), len(samples)))
for i, idx in enumerate(indices):
new_data[i].append(samples[idx])
for i in range(len(new_data)):
rand.shuffle(new_data[i])
new_data = [item for sublist in new_data for item in sublist][:shots]
return new_data
if max_test_sample is not None and len(test_data) > max_test_sample:
test_data = test_data.shuffle(seed=seed).select(range(max_test_sample))
item_template = "{text}\nlabel: {label}"
user_template = "Use the provided mapping from the text to label to assign a label to the text. Only output \"label: {{label}}\" and nothing else. \n\n{context}\n\n{question}"
system_template = "label:"
prompt_template = user_template + "\n" + system_template
def preprocess(sample):
# use a different seed for every sample, but is also deterministic and affected by the set seed
local_seed = abs((hash(sample[text_field]) + seed) % (2**31))
np.random.seed(local_seed)
if "balance" in dataset:
demos = balance_labels(train_data, shot)
else:
demos = []
while len(demos) < shot:
demos += list(np.random.choice(train_data, min(len(train_data), shot - len(demos)), replace=False))
if "natural_label" in dataset:
label_mapping = [id2label[i] for i in range(num_labels)]
else:
# we map the labels to a random integer
label_mapping = list(range(num_labels))
random.seed(local_seed)
random.shuffle(label_mapping)
context = "\n\n".join([
item_template.format(text=selected_item[text_field], label=str(label_mapping[int(selected_item[label_field])]))
for selected_item in demos]
)
return {"context": context, "question": sample[text_field], "answer": str(label_mapping[int(sample[label_field])])}
final_data = test_data.map(preprocess, num_proc=40)
def post_process(output, example):
prediction = output["output"]
answer = example["answer"]
prediction = parse_output(prediction, system_template)
mets = calculate_metrics(prediction, answer)
return mets, {"parsed_output": prediction}
return {
"data": final_data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
"post_process": post_process,
}
def load_ruler(dataset, path, max_test_samples=None, seed=42):
data = load_dataset("json", data_files=path)["train"]
user_template = "{context}\n\n{question}"
system_template = "Answer:"
prompt_template = user_template + "\n" + system_template
# https://github.com/hsiehjackson/RULER/blob/main/scripts/data/synthetic/constants.py
if "mv_niah" in dataset or "mq_niah" in dataset:
user_template = "Some special magic {type_needle_v} are hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat are all the special magic {type_needle_v} for {query} mentioned in the provided text?"
system_template = "The special magic {type_needle_v} for {query} mentioned in the provided text are"
elif "niah" in dataset:
user_template = "A special magic {type_needle_v} is hidden within the following text. Make sure to memorize it. I will quiz you about the {type_needle_v} afterwards.\n{context}\nWhat is the special magic {type_needle_v} for {query} mentioned in the provided text?"
system_template = "The special magic {type_needle_v} for {query} mentioned in the provided text is"
elif "vt" in dataset:
user_template = "{example}Memorize and track the chain(s) of variable assignment hidden in the following text.\n\n{context}\nQuestion: Find all variables that are assigned the value {query} in the text above."
system_template = "Answer: According to the chain(s) of variable assignment in the text above, {num_v} variables are assigned the value {query}, they are:"
elif "cwe" in dataset:
user_template = "{example}Below is a numbered list of words. In these words, some appear more often than others. Memorize the ones that appear most often.\n{context}\nQuestion: What are the 10 most common words in the above list?"
system_template = "Answer: The top 10 words that appear most often in the list are:"
elif "fwe" in dataset:
user_template = "Read the following coded text and track the frequency of each coded word. Find the three most frequently appeared coded words.\n{context}\nQuestion: Do not provide any explanation. Please ignore the dots '....'. What are the three most frequently appeared words in the above coded text?"
system_template = "Answer: According to the coded text above, the three most frequently appeared words are:"
elif "qa" in dataset:
# note that for qa, instead of calculating the recall, we simply check for substring exact match
user_template = "Answer the question based on the given documents. Only give me the answer and do not output any other words.\n\nThe following are given documents.\n\n{context}\n\nAnswer the question based on the given documents. Only give me the answer and do not output any other words.\n\nQuestion: {question}"
system_template = "Answer:"
else:
raise NotImplementedError(f"Unknown ruler dataset {dataset}")
prompt_template = user_template + "\n" + system_template
def process_example(example):
return {
"question": example["query"] if "query" in example else example["question"] if "question" in example else "",
"example": example["example"] + "\n\n" if "example" in example and example["example"] != "" else "",
"answer": example["answer"] if "answer" in example else example['outputs'],
}
data = data.map(process_example)
def post_process(output, example):
# we don't do any parsing since we are only checking for substring exact match
prediction = output["output"]
answer = example["answer"]
recall = sum([a.lower() in prediction.lower() for a in answer]) / len(answer)
mets = {"ruler_recall": recall}
return mets, {"parsed_output": prediction}
if max_test_samples is not None:
data = data.shuffle(seed).select(range(min(len(data), max_test_samples)))
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
"post_process": post_process if "qa" not in dataset else default_post_process,
}
def load_alce(dataset, path, demo_path, shots=0):
# demo path is the prompt file
with open(demo_path, "r") as f:
demos = json.load(f)
instruction = demos["instruction"]
demo_prompt = demos["demo_prompt"]
doc_prompt = demos["doc_prompt"]
# there are 5 docs for each demo, and we use all of them
user_template = "{demo_text}{instruction}\n\nQuestion: {question}\n\n{context}"
system_template = "Answer:"
prompt_template = user_template + "\n\n" + system_template
data = load_dataset("json", data_files=path)["train"]
num_docs = int(dataset.split("_")[-1])
def preprocess_example(example):
context = "\n\n".join([doc_prompt.format(**d, ID=idx+1) for idx, d in enumerate(example["docs"][:num_docs])])
demo_text = "\n\n\n".join([
demo_prompt.format(**demo, instruction=instruction, context = "\n\n".join([doc_prompt.format(**d, ID=idx+1) for idx, d in enumerate(demo["docs"])]))
for demo in random.sample(demos["demos"], shots)
])
if shots > 0:
demo_text += "\n\n\n"
return {"context": context, "demo_text": demo_text, "instruction": instruction}
data = data.map(preprocess_example)
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
}
def load_infbench(dataset, shots=0, max_test_samples=None, seed=42):
from datasets import load_dataset, Value, Sequence, Features
ft = Features({"id": Value("int64"), "context": Value("string"), "input": Value("string"), "answer": Sequence(Value("string")), "options": Sequence(Value("string"))})
data = load_dataset("xinrongzhang2022/infinitebench", features=ft)
# https://github.com/OpenBMB/InfiniteBench/blob/main/src/prompt.py
# slightly modified to be consistent with other datasets, shouldn't affect performance
post_process = default_post_process
if "qa_eng" in dataset:
user_template = "You are given a story and a question. Answer the question as concisely as you can, using a single phrase if possible.\n\n{demo}{context}\n\nQuestion: {question}"
system_template = "Answer:"
data = data["longbook_qa_eng"]
elif "choice_eng" in dataset:
user_template = "You are given a story and a question with multiple choices. Choose the best answer from the options provided. Only one of the following options is correct, output the answer using one single letter (A, B, C, or D). Don't say anything else.\n\n{demo}{context}\n\nQuestion: {question}\nOptions:\n{options}"
system_template = "Answer:"
data = data["longbook_choice_eng"]
def pp(output, example):
prediction = output["output"]
answer = example["answer"]
mets = calculate_metrics(prediction, answer)
mets.pop("substring_exact_match")
parsed_pred = parse_output(prediction)
if parsed_pred is not None:
new_mets = calculate_metrics(parsed_pred, answer)
new_mets.pop("substring_exact_match")
mets = {k: max(v, new_mets[k]) for k, v in mets.items()}
# we only allow for substring exact match for the second answer (A. option)
# to make it easier to collect the results, we merge exact_match and substring_exact_match here
mets["substring_exact_match"] = False
if answer[1].lower() in prediction.lower():
# we shouldn't need to do other normalization
mets["substring_exact_match"] = True
mets["exact_match"] = True
return mets, {"parsed_output": parsed_pred}
post_process = pp
elif "sum_eng" in dataset:
user_template = "You are given a book and you are tasked to summarize it. Write a summary of about 1000 to 1200 words. Only write about the plot and characters of the story. Do not discuss the themes or background of the book. Do not provide any analysis or commentary.\n\n{demo}{context}\n\nNow summarize the book."
system_template = "Summary:"
data = data["longbook_sum_eng"]
prompt_template = user_template + "\n\n" + system_template
def process_example(example):
update = {"question": example["input"], "demo": ""}
if "choice" in dataset:
options = "A. {}\nB. {}\nC. {}\nD. {}".format(*example["options"])
answer = example["options"].index(example["answer"][0])
answer = chr(ord("A") + answer)
update["options"] = options
update["answer"] = [answer, f"{answer}. {example['answer'][0]}"]
return update
data = truncate_llama2(dataset, data)
all_data = data.map(process_example)
data = all_data
if max_test_samples is not None:
data = data.shuffle(seed=seed).select(range(min(len(data), max_test_samples)))
def add_demos(example):
demos = all_data.filter(lambda x: x["id"] != example["id"]).shuffle(seed=seed).select(range(shots))
if "qa_eng" in dataset:
temp = "[story text]\nQuestion: {question}\nAnswer: {answer[0]}"
demo = "\n\n".join([temp.format(**x) for x in demos])
elif "choice_eng" in dataset:
temp = "[story text]\nQuestion: {question}\nOptions:\n{options}\nAnswer: {answer[0]}"
demo = "\n\n".join([temp.format(**x) for x in demos])
elif "sum_eng" in dataset:
demo = "\n\n".join([f"[story text]\nSummary: {x['answer'][0].strip()}" for x in demos])
return {"demo": f"For example:\n\n{demo}\n\nNow, read the following story:\n\n"}
if shots > 0:
data = data.map(add_demos)
return {
"data": data,
"prompt_template": prompt_template,
"user_template": user_template,
"system_template": system_template,
"post_process": post_process,
}
def shuffle_labels(data, method="shuffle"):
"""
For classification tasks with fixed number of labels, we can shuffle the labels to make the task harder.
The model needs to rely on the demo more than using the clue from the label names.
We support different ways of doing this.
1. shuffle -- the label names don't change but we shuffle them (a bijection mapping from old to new and different label)
2. numbers -- change labels to 0 to n-1
3. uuid -- change labels to random uuids
"""
# 1. create the mapping from original label to the new label
label_set = list(set(data["data"]["answer"]))
if method == "shuffle":
# random shuffle and then create a mapping, this gives us a random bijection mapping
random.shuffle(label_set)
mapping = {label_set[i]: label_set[(i+1) % len(label_set)] for i in range(len(label_set))}
elif method == "numbers":
mapping = {label: i for i, label in enumerate(label_set)}
elif method == "uuid":
import uuid
mapping = {label: str(uuid.uuid4()) for label in label_set}
else:
raise NotImplementedError(f"Unknown method {method}")
logger.info(f"Mapping: {mapping}")
# 2. replace the original label with the new label in the text
# we do the replace with system_template prepend to avoid replacing the label strings that are also substrings of the test text
pattern = re.compile("|".join(mapping.keys()))
def replace(sample):
context_mapping = {data["system_template"].format(sample) + " " + k: data["system_template"].format(sample) + " " + v for k, v in mapping.items()}
context_pattern = re.compile("|".join(context_mapping.keys()))
return {
"context": pattern.sub(lambda x: mapping[re.escape(x.group(0))], sample["context"]),
"answer": mapping[sample["answer"]],
"original_answer": sample["answer"],
}
data["data"] = data["data"].map(replace)
def default_post_process(output, example):
"""
Returns: metrics (dict) and additional info to update the original sample with (dict)
"""
prediction = output["output"]
answer = example["answer"]
mets = calculate_metrics(prediction, answer)
# we check the metrics after parsing and take the max
parsed_pred = parse_output(prediction)
if parsed_pred is not None:
new_mets = calculate_metrics(parsed_pred, answer)
mets = {k: max(v, new_mets[k]) for k, v in mets.items()}
return mets, {"parsed_output": parsed_pred}
def load_data(args, dataset, path=None, demo_path=None):
if "popqa" in dataset:
popularity_threshold = float(dataset.split("_")[-1])
data = load_qa(dataset, path, demo_path, max_test_samples=args.max_test_samples, popularity_threshold=popularity_threshold, shots=args.shots)
elif any([x in dataset for x in ["nq", "hotpotqa", "triviaqa"]]):
data = load_qa(dataset, path, demo_path, max_test_samples=args.max_test_samples, shots=args.shots)
elif dataset == "json_kv":
data = load_json_kv(path, args.shots, args.max_test_samples, args.seed)
elif "narrativeqa" in dataset:
data = load_narrativeqa(dataset, path, args.shots, args.max_test_samples, args.seed)
elif "qasper" in dataset:
data = load_qasper(dataset, path, args.shots, args.max_test_samples, args.seed)
elif "msmarco" in dataset:
data = load_msmarco_rerank(path, demo_path, args.max_test_samples, args.shots, args.seed)
elif "alce" in dataset:
data = load_alce(dataset, path, demo_path, args.shots)
if args.max_test_samples is not None:
data["data"] = data["data"].shuffle(seed=args.seed).select(range(min(args.max_test_samples, len(data["data"]))))
elif "icl" in dataset:
data = load_icl(dataset, max_test_sample=args.max_test_samples, seed=args.seed)
elif "multi_lexsum" in dataset:
data = load_multi_lexsum(dataset, path, args.shots, args.max_test_samples, seed=args.seed)
elif "ruler" in dataset:
if args.shots != 0:
logger.info("RULER does not support ICL demos, not using any shots")
data = load_ruler(dataset, path, args.max_test_samples, seed=args.seed)
elif "infbench" in dataset:
data = load_infbench(dataset, args.shots, args.max_test_samples, seed=args.seed)
else:
raise ValueError(f"Unknown dataset {dataset}")
if "post_process" not in data:
data["post_process"] = default_post_process
return data
class TestItemDataset(Dataset):
def __init__(self, data, llm, tokenizer):
self.data = data
self.llm = llm
self.tokenizer = tokenizer
def __len__(self):
return len(self.data["data"])
def __getitem__(self, idx):
inputs = self.llm.prepare_inputs(self.data["data"][idx], self.data)
original_text = None
if "input_ids" in inputs:
original_text = self.tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=False)
return inputs, original_text