-
Notifications
You must be signed in to change notification settings - Fork 68
/
open_cv.py
43 lines (34 loc) · 1.12 KB
/
open_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
import numpy as np
import time
cap = cv2.VideoCapture(0)
time.sleep(3)
background=0
for i in range(30):
ret,background = cap.read()
background = np.flip(background,axis=1)
while(cap.isOpened()):
ret, img = cap.read()
# Flipping the image (Can be uncommented if needed)
img = np.flip(img,axis=1)
# Converting image to HSV color space.
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
value = (35, 35)
blurred = cv2.GaussianBlur(hsv, value,0)
# Defining lower range for red color detection.
lower_red = np.array([0,120,70])
upper_red = np.array([10,255,255])
mask1 = cv2.inRange(hsv,lower_red,upper_red)
# Defining upper range for red color detection
lower_red = np.array([170,120,70])
upper_red = np.array([180,255,255])
mask2 = cv2.inRange(hsv,lower_red,upper_red)
# Addition of the two masks to generate the final mask.
mask = mask1+mask2
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((5,5),np.uint8))
# Replacing pixels corresponding to cloak with the background pixels.
img[np.where(mask==255)] = background[np.where(mask==255)]
cv2.imshow('Display',img)
k = cv2.waitKey(10)
if k == 27:
break