-
Notifications
You must be signed in to change notification settings - Fork 0
/
Matrix.cs
162 lines (153 loc) · 4.33 KB
/
Matrix.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
namespace NeuralNetwork
{
internal class Matrix
{
private readonly double[][] _data;
private readonly int _rows, _cols;
public Matrix(int rows, int cols)
{
_data = new double[rows][];
for (int i = 0; i < rows; i++)
{
_data[i] = new double[cols];
}
this._rows = rows;
this._cols = cols;
for (int i = 0; i < rows; i++)
{
for (int j = 0; j < cols; j++)
{
_data[i][j] = (new Random().NextDouble() * 2) - 1;
}
}
}
public void Add(Matrix m)
{
if (_cols != m._cols || _rows != m._rows)
{
Console.WriteLine("Shape Mismatch");
return;
}
for (int i = 0; i < _rows; i++)
{
for (int j = 0; j < _cols; j++)
{
this._data[i][j] += m._data[i][j];
}
}
}
public static Matrix Subtract(Matrix a, Matrix b)
{
Matrix temp = new(a._rows, a._cols);
for (int i = 0; i < a._rows; i++)
{
for (int j = 0; j < a._cols; j++)
{
temp._data[i][j] = a._data[i][j] - b._data[i][j];
}
}
return temp;
}
public static Matrix Transpose(Matrix a)
{
Matrix temp = new(a._cols, a._rows);
for (int i = 0; i < a._rows; i++)
{
for (int j = 0; j < a._cols; j++)
{
temp._data[j][i] = a._data[i][j];
}
}
return temp;
}
public void Sigmoid()
{
for (int i = 0; i < _rows; i++)
{
for (int j = 0; j < _cols; j++)
{
this._data[i][j] = 1 / (1 + Math.Exp(-this._data[i][j]));
}
}
}
public Matrix Dsigmoid()
{
Matrix temp = new(_rows, _cols);
for (int i = 0; i < _rows; i++)
{
for (int j = 0; j < _cols; j++)
{
temp._data[i][j] = this._data[i][j] * (1 - this._data[i][j]);
}
}
return temp;
}
public static Matrix Multiply(Matrix a, Matrix b)
{
Matrix temp = new(a._rows, b._cols);
for (int i = 0; i < temp._rows; i++)
{
for (int j = 0; j < temp._cols; j++)
{
double sum = 0;
for (int k = 0; k < a._cols; k++)
{
sum += a._data[i][k] * b._data[k][j];
}
temp._data[i][j] = sum;
}
}
return temp;
}
public void Multiply(Matrix a)
{
for (int i = 0; i < a._rows; i++)
{
for (int j = 0; j < a._cols; j++)
{
this._data[i][j] *= a._data[i][j];
}
}
}
public void Multiply(double a)
{
for (int i = 0; i < _rows; i++)
{
for (int j = 0; j < _cols; j++)
{
this._data[i][j] *= a;
}
}
}
public static Matrix FromArray(double[] x)
{
Matrix temp = new(x.Length, 1);
for (int i = 0; i < x.Length; i++)
{
temp._data[i][0] = x[i];
}
return temp;
}
public List<double> ToArray()
{
List<double> temp = new();
for (int i = 0; i < _rows; i++)
{
for (int j = 0; j < _cols; j++)
{
temp.Add(_data[i][j]);
}
}
return temp;
}
public static double MseLoss(Matrix m)
{
double sumSq = 0;
for (int i = 0; i < m._rows; i++)
{
sumSq += Math.Pow(m._data[m._rows - 1][0], 2);
}
return sumSq / m._rows;
}
}
}