-
Notifications
You must be signed in to change notification settings - Fork 0
/
NLP_KNN.py
63 lines (38 loc) · 1.67 KB
/
NLP_KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
os.chdir('/Users/narsingrao/Documents/Satish_ML/Machine Learning A-Z (Codes and Datasets)/Part 7 - Natural Language Processing/Section 36 - Natural Language Processing/Python')
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv('Restaurant_Reviews.tsv', delimiter = '\t', quoting = 3)
import re
corpus = []
for i in range(0, 1000):
review = re.sub('[^a-zA-Z]', ' ', dataset['Review'][i])
review= review.lower()
review = review.split()
import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')
review = [word for word in review if not word in set(stopwords.words('english'))]
from nltk.stem.porter import PorterStemmer
ps = PorterStemmer()
review = [ps.stem(word) for word in review if not word in set(stopwords.words('english'))]
review = ' '.join(review)
corpus.append(review)
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer()
X = cv.fit_transform(corpus).toarray()
cv = CountVectorizer(max_features = 1500)
X = cv.fit_transform(corpus).toarray()
y = dataset.iloc[:,1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors=5, metric = 'minkowski', p =2)
classifier.fit(X_train, y_train)
#Predicting Results TEST
y_pred = classifier.predict(X_test)
#Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
accuracy = (cm[0][0] + cm[0][1]) / (cm[1][0]+cm[1][1])