You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
NTI-Final-Assignment Use flask(python) and shiny dashboard (R) to build simple user interface to see how choosing classification model may affect prediction accuracy, using Customer Churn Dataset.
Credit risk is an inherently unbalanced classification problem, as the number of good loans easily outnumber the number of risky loans. I employed Machine Learning techniques to train and evaluate models with unbalanced classes. I used imbalanced-learn and scikit-learn libraries to build and evaluate models using resampling. I also evaluated the…
Data analysts were asked to examine credit card data from peer-to-peer lending services company LendingClub in order to determine credit risk. Supervised machine learning was employed to find out which model would perform the best against an unbalanced dataset. Data analysts trained and evaluated several models to predict credit risk.
Predicting customer sentiments from feedbacks for amazon. While exploring NLP and its fundamentals, I have executed many data preprocessing techniques. In this repository, I have implemented a bag of words using CountVectorizer class from sklearn. I have trained this vector using the LogisticRegression algorithm which gives approx 93% accuracy. …