-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
93 lines (68 loc) · 2.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import nltk
import pickle
import re
import numpy as np
from gensim.models import KeyedVectors
nltk.download('stopwords')
from nltk.corpus import stopwords
# Paths for all resources for the bot.
RESOURCE_PATH = {
'INTENT_RECOGNIZER': 'intent_recognizer.pkl',
'TAG_CLASSIFIER': 'tag_classifier.pkl',
'TFIDF_VECTORIZER': 'tfidf_vectorizer.pkl',
'THREAD_EMBEDDINGS_FOLDER': 'thread_embeddings_by_tags',
'WORD_EMBEDDINGS': 'data/word_embeddings.tsv',
}
def text_prepare(text):
"""Performs tokenization and simple preprocessing."""
replace_by_space_re = re.compile('[/(){}\[\]\|@,;]')
bad_symbols_re = re.compile('[^0-9a-z #+_]')
stopwords_set = set(stopwords.words('english'))
text = text.lower()
text = replace_by_space_re.sub(' ', text)
text = bad_symbols_re.sub('', text)
text = ' '.join([x for x in text.split() if x and x not in stopwords_set])
return text.strip()
def load_embeddings(embeddings_path):
"""Loads pre-trained word embeddings from tsv file.
Args:
embeddings_path - path to the embeddings file.
Returns:
embeddings - dict mapping words to vectors;
embeddings_dim - dimension of the vectors.
"""
# Hint: you have already implemented a similar routine in the 3rd assignment.
# Note that here you also need to know the dimension of the loaded embeddings.
# When you load the embeddings, use numpy.float32 type as dtype
########################
#### YOUR CODE HERE ####
########################
with open(embeddings_path, 'r') as fl:
starspace_embeddings = dict()
for line in fl:
line = line.split('\t')
word = line[0]
embedding = np.array(line[1:], dtype=np.float32)
starspace_embeddings[word] = embedding
embeddings_dim = starspace_embeddings['word'].shape[0]
# remove this when you're done
return starspace_embeddings, embeddings_dim
def question_to_vec(question, embeddings, dim=300):
"""
question: a string
embeddings: dict where the key is a word and a value is its' embedding
dim: size of the representation
result: vector representation for the question
"""
words = [w for w in question.split() if w in embeddings]
if len(words) == 0:
return np.zeros(dim)
question_word_embeddings = np.zeros((len(words), dim))
for i, word in enumerate(words):
if word in embeddings:
question_word_embeddings[i] = embeddings[word]
return question_word_embeddings.mean(axis=0)
def unpickle_file(filename):
"""Returns the result of unpickling the file content."""
with open(filename, 'rb') as f:
return pickle.load(f)