-
Notifications
You must be signed in to change notification settings - Fork 0
/
style_transfer.py
executable file
·216 lines (195 loc) · 8.91 KB
/
style_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import numpy as np
import scipy.misc
from stylize import stylize
import math
from argparse import ArgumentParser
from PIL import Image
# default arguments
CONTENT_WEIGHT = 5e0
CONTENT_WEIGHT_BLEND = 1
STYLE_WEIGHT = 5e2
#total variation denoising, make result image looks more smooth
TV_WEIGHT = 1e2
STYLE_LAYER_WEIGHT_EXP = 1
#adam optimizer arguments
LEARNING_RATE = 1e1
BETA1 = 0.9
BETA2 = 0.999
EPSILON = 1e-08
STYLE_SCALE = 1.0
ITERATIONS = 1000
VGG_PATH = 'imagenet-vgg-verydeep-19.mat'
POOLING = 'avg'
#define arguments with a argumentparser
def build_parser():
parser = ArgumentParser()
parser.add_argument('--content',
dest='content', help='content image',
metavar='CONTENT', required=True)
parser.add_argument('--styles',
dest='styles',
nargs='+', help='one or more style images',
metavar='STYLE', required=True)
parser.add_argument('--output',
dest='output', help='output path',
metavar='OUTPUT', required=True)
parser.add_argument('--iterations', type=int,
dest='iterations', help='iterations (default %(default)s)',
metavar='ITERATIONS', default=ITERATIONS)
parser.add_argument('--print-iterations', type=int,
dest='print_iterations', help='statistics printing frequency',
metavar='PRINT_ITERATIONS')
parser.add_argument('--checkpoint-output',
dest='checkpoint_output', help='checkpoint output format, e.g. output%s.jpg',
metavar='OUTPUT')
parser.add_argument('--checkpoint-iterations', type=int,
dest='checkpoint_iterations', help='checkpoint frequency',
metavar='CHECKPOINT_ITERATIONS')
parser.add_argument('--width', type=int,
dest='width', help='output width',
metavar='WIDTH')
parser.add_argument('--style-scales', type=float,
dest='style_scales',
nargs='+', help='one or more style scales',
metavar='STYLE_SCALE')
parser.add_argument('--network',
dest='network', help='path to network parameters (default %(default)s)',
metavar='VGG_PATH', default=VGG_PATH)
parser.add_argument('--content-weight-blend', type=float,
dest='content_weight_blend', help='content weight blend, conv4_1 * blend + conv5_1 * (1-blend) (default %(default)s)',
metavar='CONTENT_WEIGHT_BLEND', default=CONTENT_WEIGHT_BLEND)
parser.add_argument('--content-weight', type=float,
dest='content_weight', help='content weight (default %(default)s)',
metavar='CONTENT_WEIGHT', default=CONTENT_WEIGHT)
parser.add_argument('--style-weight', type=float,
dest='style_weight', help='style weight (default %(default)s)',
metavar='STYLE_WEIGHT', default=STYLE_WEIGHT)
parser.add_argument('--style-layer-weight-exp', type=float,
dest='style_layer_weight_exp', help='style layer weight exponentional increase - weight(layer<n+1>) = weight_exp*weight(layer<n>) (default %(default)s)',
metavar='STYLE_LAYER_WEIGHT_EXP', default=STYLE_LAYER_WEIGHT_EXP)
parser.add_argument('--style-blend-weights', type=float,
dest='style_blend_weights', help='style blending weights',
nargs='+', metavar='STYLE_BLEND_WEIGHT')
parser.add_argument('--tv-weight', type=float,
dest='tv_weight', help='total variation regularization weight (default %(default)s)',
metavar='TV_WEIGHT', default=TV_WEIGHT)
parser.add_argument('--learning-rate', type=float,
dest='learning_rate', help='learning rate (default %(default)s)',
metavar='LEARNING_RATE', default=LEARNING_RATE)
parser.add_argument('--beta1', type=float,
dest='beta1', help='Adam: beta1 parameter (default %(default)s)',
metavar='BETA1', default=BETA1)
parser.add_argument('--beta2', type=float,
dest='beta2', help='Adam: beta2 parameter (default %(default)s)',
metavar='BETA2', default=BETA2)
parser.add_argument('--eps', type=float,
dest='epsilon', help='Adam: epsilon parameter (default %(default)s)',
metavar='EPSILON', default=EPSILON)
parser.add_argument('--initial',
dest='initial', help='initial image',
metavar='INITIAL')
parser.add_argument('--initial-noiseblend', type=float,
dest='initial_noiseblend', help='ratio of blending initial image with normalized noise (if no initial image specified, content image is used) (default %(default)s)',
metavar='INITIAL_NOISEBLEND')
parser.add_argument('--preserve-colors', action='store_true',
dest='preserve_colors', help='style-only transfer (preserving colors) - if color transfer is not needed')
parser.add_argument('--pooling',
dest='pooling', help='pooling layer configuration: max or avg (default %(default)s)',
metavar='POOLING', default=POOLING)
return parser
def main():
#obtain arguments
parser = build_parser()
options = parser.parse_args()
if not os.path.isfile(options.network):
parser.error("Network %s does not exist.)" % options.network)
content_image = imread(options.content)
style_images = [imread(style) for style in options.styles]
#resize input and output images
width = options.width
if width is not None:
new_shape = (int(math.floor(float(content_image.shape[0]) /
content_image.shape[1] * width)), width)
content_image = scipy.misc.imresize(content_image, new_shape)
target_shape = content_image.shape
for i in range(len(style_images)):
style_scale = STYLE_SCALE
if options.style_scales is not None:
style_scale = options.style_scales[i]
style_images[i] = scipy.misc.imresize(style_images[i], style_scale *
target_shape[1] / style_images[i].shape[1])
style_blend_weights = options.style_blend_weights
if style_blend_weights is None:
# default is equal weights
style_blend_weights = [1.0/len(style_images) for _ in style_images]
else:
total_blend_weight = sum(style_blend_weights)
style_blend_weights = [weight/total_blend_weight
for weight in style_blend_weights]
initial = options.initial
if initial is not None:
initial = scipy.misc.imresize(imread(initial), content_image.shape[:2])
# Initial guess is specified, but not noiseblend - no noise should be blended
if options.initial_noiseblend is None:
options.initial_noiseblend = 0.0
else:
# Neither inital, nor noiseblend is provided, falling back to random generated initial guess
if options.initial_noiseblend is None:
options.initial_noiseblend = 1.0
if options.initial_noiseblend < 1.0:
initial = content_image
if options.checkpoint_output and "%s" not in options.checkpoint_output:
parser.error("To save intermediate images, the checkpoint output "
"parameter must contain `%s` (e.g. `foo%s.jpg`)")
for iteration, image in stylize(
network=options.network,
initial=initial,
initial_noiseblend=options.initial_noiseblend,
content=content_image,
styles=style_images,
preserve_colors=options.preserve_colors,
iterations=options.iterations,
content_weight=options.content_weight,
content_weight_blend=options.content_weight_blend,
style_weight=options.style_weight,
style_layer_weight_exp=options.style_layer_weight_exp,
style_blend_weights=style_blend_weights,
tv_weight=options.tv_weight,
learning_rate=options.learning_rate,
beta1=options.beta1,
beta2=options.beta2,
epsilon=options.epsilon,
pooling=options.pooling,
print_iterations=options.print_iterations,
checkpoint_iterations=options.checkpoint_iterations
):
output_file = None
combined_rgb = image
#save checkpoint image depended on checkpoint iterations
if iteration is not None:
if options.checkpoint_output:
output_file = options.checkpoint_output % iteration
else:
output_file = options.output
if output_file:
imsave(output_file, combined_rgb)
def imread(path):
img = scipy.misc.imread(path).astype(np.float)
# input a grayscale img
# img.shape = [width, height]
if len(img.shape) == 2:
img = np.dstack((img,img,img))
#input a png image
# img.shape = [width,height,channels]
#img.shape[2] = 4 r, g, b, alpha
elif img.shape[2] == 4:
# PNG with alpha channel, only save rgb channels
img = img[:,:,:3]
#defalut a jpg img with r, g, b channels return img.shape[2] = 3
return img
def imsave(path, img):
img = np.clip(img, 0, 255).astype(np.uint8)
Image.fromarray(img).save(path, quality=95)
if __name__ == '__main__':
main()