-
Notifications
You must be signed in to change notification settings - Fork 0
/
torch_better_output.py
49 lines (42 loc) · 1.33 KB
/
torch_better_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 14 21:15:39 2017
@author: Administrator
"""
#import torch
from torch.autograd import Variable
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def betteroutput(model,inputs,labels):
input_var=Variable(inputs.cuda())
output = model(input_var)
prec1, prec3 = accuracy(output.data, labels, topk=(1, 3))
top1.update(prec1[0], inputs.size(0))
top3.update(prec3[0], inputs.size(0))
losses = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()