A Langchain compatible implementation which enables the integration with LLM-API
The main reason for implementing this package is to be able to use Langchain with any model run locally.
You can install this as a python library using the command (until it's integrated with langchain itself)
pip install langchain-llm-api
To use this langchain implementation with the LLM-API:
from langchain_llm_api import LLMAPI, APIEmbeddings
llm = LLMAPI(
host_name="http://localhost:8000",
params={"temp": 0.2},
verbose=True
)
llm("What is the capital of France?")
Or with streaming:
from langchain_llm_api import LLMAPI, APIEmbeddings
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = LLMAPI(
host_name="http://localhost:8000",
params={"temp": 0.2},
verbose=True,
streaming=True,
callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])
)
llm("What is the capital of France?")
Check LLM-API for the possible models and thier params
to use the embeddings endpoint:
emb = APIEmbeddings(
host_name="your api host name e.g. http://localhost:8000 or wherever your LLM API is hosted",
params = {"n_predict": 300, "temp": 0.2, ...}
)