Skip to content

Python library to compute functional connectivity measures from EEG

License

Notifications You must be signed in to change notification settings

5a7man/eeg_fConn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Update

  • [version = 1.2.0] Added functionality to compute imaginary part of coherency

Installation

pip install eeg-fConn

Usage

import numpy as np
from eeg_fConn import connectivity as con

# dummy data
data = np.random.rand(10,200)

# filtering data
filtered_data = con.filteration(data=data, f_min=8, f_max=12, fs=250)

# pli connectivity
M,V = con.pli_connectivity(sensors=10,data=filtered_data)

# plv connectivity
M,V = con.plv_connectivity(sensors=10,data=filtered_data)

# ccf connectivity
M,V = con.ccf_connectivity(sensors=10,data=filtered_data)

# coh connectivity
M,V = con.coh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)

# icoh connectivity
M,V = con.icoh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)

Here M and V are connectivity matrix and connectivity vector respectively.