- [version = 1.2.0] Added functionality to compute imaginary part of coherency
pip install eeg-fConn
import numpy as np
from eeg_fConn import connectivity as con
# dummy data
data = np.random.rand(10,200)
# filtering data
filtered_data = con.filteration(data=data, f_min=8, f_max=12, fs=250)
# pli connectivity
M,V = con.pli_connectivity(sensors=10,data=filtered_data)
# plv connectivity
M,V = con.plv_connectivity(sensors=10,data=filtered_data)
# ccf connectivity
M,V = con.ccf_connectivity(sensors=10,data=filtered_data)
# coh connectivity
M,V = con.coh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)
# icoh connectivity
M,V = con.icoh_connectivity(sensors=10, data=data, f_min=8, f_max=12, fs=250)
Here M and V are connectivity matrix and connectivity vector respectively.