- Build and start Machine Learning backend on
http://localhost:9090
docker-compose up -d
- Check if it works:
$ curl http://localhost:9090/health
{"status":"UP"}
- Then connect running backend to Label Studio:
label-studio start --init new_project --ml-backends http://localhost:9090 --template image_classification
-
Place your scripts for model training & inference inside root directory. Follow the API guidelines described bellow. You can put everything in a single file, or create 2 separate one say
my_training_module.py
andmy_inference_module.py
-
Write down your python dependencies in
requirements.txt
-
Create ML backend with your model
label-studio-ml init my-ml-backend --script pytorch_transfer_learning/pytorch_transfer_learning.py
- Set Label Studio HOSTNAME and API_KEY
export LABEL_STUDIO_HOSTNAME=http://localhost:8080
export LABEL_STUDIO_API_KEY=<ls-token>
- Start ML backend at http://localhost:9090
label-studio-ml start my-ml-backend
- Start Label Studio with ML backend connection
label-studio start my-annotation-project --init --ml-backend http://localhost:9090
Check out https://github.com/heartexlabs/label-studio-ml-backend/tree/master#Create_your_own_ML_backend
This software is licensed under the Apache 2.0 LICENSE © Heartex. 2020