Please, feel free to contribute to this list by making a pull request.
1-. Surveys and related articles |
2-. Wired networks |
3-. Wireless networks |
4-. Job scheduling in data centers |
5-. Explainability |
-
Graph Neural Networks for Communication Networks: Context, Use Cases and Opportunities.
IEEE Network, 2021. [DOI] [ArXiv]
J. Suárez-Varela, P. Almasan, M. Ferriol-Galmés, K. Rusek, F. Geyer, X. Cheng, X. Shi, S. Xiao, F. Scarselli, A. Cabellos-Aparicio, P. Barlet-Ros. -
Graph-based Deep Learning for Communication Networks: A Survey.
Elsevier Computer Communications, 2021. [DOI]
Jiang W. -
Learning Combinatorial Optimization on Graphs: A Survey With Applications to Networking.
IEEE ACCESS, 2020. [paper]
N. Vesselinova, R. Steinert, D. Perez-Ramirez, M. Boman. -
IGNNITION: A framework for fast prototyping of Graph Neural Networks.
GNNSys workshop, 2021. [paper]
D. Pujol-Perich, J. Suárez-Varela, M. Ferriol-Galmés, S. Xiao, B. Wu, A. Cabellos-Aparicio, P. Barlet-Ros.
-
RouteNet: Leveraging Graph Neural Networks for network modeling and optimization in SDN.
IEEE JSAC, 2020. [paper]
K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, A. Cabellos-Aparicio. -
Learning and generating distributed routing protocols using graph-based deep learning.
ACM SIGCOMM BigDAMA workshop, 2018. [paper] [code]
F. Geyer, G. Carle. -
Is machine learning ready for traffic engineering optimization?
IEEE International Conference on Network Protocols (ICNP), 2021. [paper]
G. Bernrdez, J. Suárez-Varela, A. López, B. Wu, S. Xiao, X. Cheng, P. Barlet-Ros, and A. Cabellos-Aparicio. -
DeepTMA: Predicting Effective Contention Models for Network Calculus using Graph Neural Networks.
IEEE INFOCOM, 2019. [paper]
F. Geyer, S. Bondorf. -
Unveiling the potential of Graph Neural Networks for network modeling and optimization in SDN.
ACM SOSR, 2019. [paper] [code]
K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, A. Cabellos-Aparicio. -
Towards more realistic network models based on Graph Neural Networks.
ACM CoNEXT student workshop, 2019. [paper] [code]
A. Badia-Sampera, J. Suárez-Varela, P. Almasan, K. Rusek, P. Barlet-Ros, A. Cabellos-Aparicio. -
Deep Reinforcement Learning meets Graph Neural Networks: Exploring a routing optimization use case.
ArXiv preprint arXiv:1910.07421, 2019 [paper]
P. Almasan, J. Suárez-Varela, A. Badia-Sampera, K. Rusek, P. Barlet-Ros, A. Cabellos-Aparicio. -
A Deep Reinforcement Learning Approach for VNF Forwarding Graph Embedding.
IEEE Transactions on Network and Service Management, 2019. [paper]
Q. T. A. Pham, Y. Hadjadj-Aoul, A. Outtagarts. -
DeepMPLS: Fast Analysis of MPLS Configurations Using Deep Learning.
IFIP Networking, 2019. [paper]
F. Geyer, S. Schmid. -
Combining Deep Reinforcement Learning With Graph Neural Networks for Optimal VNF Placement.
IEEE Communications Letters, 2020. [paper]
P Sun, J Lan, J Li, Z Guo, Y Hu. -
GCLR: GNN-Based Cross Layer Optimization for Multipath TCP by Routing.
IEEE Access, 2020. [doi]
H. Wang, Y. Wu, G. Min, W. Miao -
Network Planning with Deep Reinforcement Learning.
ACM SIGCOMM, 2021. [doi]
H. Zhu, V. Gupta, S. S. Ahuja, Y. D. Tian, Y. Zhang, and X. Jin
-
Graph neural networks for scalable radio resource management: Architecture design and theoretical analysis.
IEEE JSAC, 2020. [paper]
Y. Shen, Y. Shi, J. Zhang, K.B. Letaief. -
Optimal wireless resource allocation with random edge graph neural networks.
IEEE Transactions on Signal Processing, 2020. [paper]
M. Eisen, A. Ribeiro. -
Relational Deep Reinforcement Learning for Routing in Wireless Networks.
arXiv preprint arXiv:2012.15700, 2020. [paper]
V. Manfredi,, A. Wolfe, B. Wang, X. Zhang. -
Unsupervised Learning for Asynchronous Resource Allocation in Ad-hoc Wireless Networks.
arXiv preprint arXiv:2011.02644, 2020. [paper]
Z. Wang, M. Eisen, A. Ribeiro. -
Graph Attention Spatial-Temporal Network with Collaborative Global-Local Learning for Citywide Mobile Traffic Prediction
IEEE Transactions on Mobile Computing, 2020. [paper]
K. He, X. Chen, Q. Wu, S. Yu, Z. Zhou -
Channel Estimation for Full-Duplex RIS-assisted HAPS Backhauling with Graph Attention Networks
IEEE International Conference on Communications, 2021. [paper]
K. Tekbıyık, G. K. Kurt, C. Huang, A. R. Ekti, H. Yanikomeroglu.
-
Learning scheduling algorithms for data processing clusters.
ACM SIGCOMM, 2019. [paper]
H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, M. Alizadeh. -
DeepWeave: Accelerating Job Completion Time with Deep Reinforcement Learning-based Coflow
Scheduling. IJCAI, 2020. [paper]
P. Sun, Z. Guo, J. Wang, J. Li, J. Lan, Y. Hu
-
Interpreting Deep Learning-Based Networking Systems.
ACM SIGCOMM, 2020. [paper]
Z. Meng, M. Wang, J. Bai, M. Xu, H. Mao, H. Hu. -
NetXplain: Real-time explainability of Graph Neural Networks applied to Computer Networks.
GNNSys workshop, 2021. [paper]
D. Pujol-Perich, J. Suárez-Varela, S. Xiao, B. Wu, A. Cabellos-Aparicio, P. Barlet-Ros.
This list is intended to be short and keep only relevant references on different types of communication networks. You may refer to the following link for a more complete list with all the existing works in the field:
GNN-Communication-Networks: https://github.com/jwwthu/GNN-Communication-Networks