Skip to content

YOLOv3、YOLOv4、YOLOv5、YOLOv5-Lite、YOLOv6、YOLOv7、YOLOX、YOLOX-Lite、TensorRT、NCNN、Tengine、OpenVINO

Notifications You must be signed in to change notification settings

ChenWanger/YOLOU

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOU:United, Study and easier to Deploy

​ The purpose of our creation of YOLOU is to better learn the algorithms of the YOLO series and pay tribute to our predecessors.

​ Here "U" means United, mainly to gather more algorithms about the YOLO series through this project, so that friends can better learn the knowledge of object detection. At the same time, in order to better apply AI technology, YOLOU will also join The corresponding Deploy technology will accelerate the implementation of the algorithms we have learned and realize the value.

YOLOU

At present, the YOLO series algorithms mainly included in YOLOU are:

Anchor-base: YOLOv3, YOLOv4, YOLOv5, YOLOv5-Lite, YOLOv7

Anchor-Free: YOLOv6, YOLOX, YOLOX-Lite

Comparison of ablation experiment results

Model size(pixels) mAP@.5 mAP@.5:95 Parameters(M) GFLOPs TensorRT-FP32(b16)
ms/fps
TensorRT-FP16(b16)
ms/fps
YOLOv5n 640 45.7 28.0 1.9 4.5 0.95/1054.64 0.61/1631.64
YOLOv5s 640 56.8 37.4 7.2 16.5 1.7/586.8 0.84/1186.42
YOLOv5m 640 64.1 45.4 21.2 49.0 4.03/248.12 1.42/704.20
YOLOv5l 640 67.3 49.0 46.5 109.1
YOLOv5x 640 68.9 50.7 86.7 205.7
YOLOv6-T 640
YOLOv6-n 640
YOLOv6 640 58.4 39.8 20.4 28.8 3.06/326.93 1.27/789.51
YOLOv7 640 69.7 51.4 37.6 53.1 8.18/113.88 1.97/507.55
YOLOv7-X 640 71.2 53.7 71.3 95.1
YOLOv7-W6 640 72.6 54.9
YOLOv7-E6 640 73.5 56.0
YOLOv7-D6 640 74.0 56.6
YOLOv7-E6E 640 74.4 56.8
YOLOX-s 640 59.0 39.2 8.1 10.8 2.11/473.78 0.89/1127.67
YOLOX-m 640 63.8 44.5 23.3 31.2 4.94/202.43 1.58/632.48
YOLOX-l 640 54.1 77.7
YOLOX-x 640 104.5 156.2
v5-Lite-e 320 35.1 0.78 0.73 0.55/1816.10 0.49/2048.47
v5-Lite-s 416 42.0 25.2 1.64 1.66 0.72/1384.76 0.64/1567.36
v5-Lite-c 512 50.9 32.5 4.57 5.92 1.18/850.03 0.80/1244.20
v5-Lite-g 640 57.6 39.1 5.39 15.6 1.85/540.90 1.09/916.69
X-Lite-e 320 36.4 21.2 2.53 1.58 0.65/1547.58 0.46/2156.38
X-Lite-s 416 Training… Training… 3.36 2.90
X-Lite-c 512 Training… Training… 6.25 5.92
X-Lite-g 640 58.3 40.7 7.30 12.91 2.15/465.19 1.01/990.69

You can download all pretrained weights of YOLOU with Baidu Drive (YOLO)

How to use

Install

git clone https://github.com/jizhishutong/YOLOU
cd YOLOU
pip install -r requirements.txt

Training

python train.py --mode yolov6 --data coco.yaml --cfg yolov6.yaml --weights yolov6.pt --batch-size 32

Detect

python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            'https://youtu.be/NUsoVlDFqZg'  # YouTube
                            'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

DataSet

train: ../coco/images/train2017/
val: ../coco/images/val2017/
├── images            # xx.jpg example
│   ├── train2017        
│   │   ├── 000001.jpg
│   │   ├── 000002.jpg
│   │   └── 000003.jpg
│   └── val2017         
│       ├── 100001.jpg
│       ├── 100002.jpg
│       └── 100003.jpg
└── labels             # xx.txt example      
    ├── train2017       
    │   ├── 000001.txt
    │   ├── 000002.txt
    │   └── 000003.txt
    └── val2017         
        ├── 100001.txt
        ├── 100002.txt
        └── 100003.txt

Export ONNX

python export.py --weights ./weights/yolov6/yolov6s.pt --include onnx

Reference

https://github.com/ultralytics/yolov5

https://github.com/WongKinYiu/yolor

https://github.com/ppogg/YOLOv5-Lite

https://github.com/WongKinYiu/yolov7

https://github.com/meituan/YOLOv6

https://github.com/ultralytics/yolov3

https://github.com/Megvii-BaseDetection/YOLOX

https://github.com/WongKinYiu/ScaledYOLOv4

https://github.com/WongKinYiu/PyTorch_YOLOv4

https://github.com/WongKinYiu/yolor

https://github.com/shouxieai/tensorRT_Pro

https://github.com/Tencent/ncnn

https://github.com/Gumpest/YOLOv5-Multibackbone-Compression

https://github.com/positive666/yolov5_research

https://github.com/cmdbug/YOLOv5_NCNN

https://github.com/OAID/Tengine

Citing YOLOU

If you use YOLOU in your research, please cite our work and give a star ⭐:

 @misc{yolou2022,
  title = { YOLOU:United, Study and easier to Deploy},
  author = {ChaucerG},
  year={2022}
}

About

YOLOv3、YOLOv4、YOLOv5、YOLOv5-Lite、YOLOv6、YOLOv7、YOLOX、YOLOX-Lite、TensorRT、NCNN、Tengine、OpenVINO

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.4%
  • Shell 1.2%
  • Dockerfile 0.4%