Acknowledgement: This deep learning pipeline was initially constructed by Matt Purri, modified and maintained by Zhijie (JJ) Zhang. This work was funded by NASA Commercial Smallsat Data Acquisition (CSDA) Program, award number: 80NSSC21K1163. PI: Beth Tellman. This is a product of Social [Pixel] Lab.
- conda install -c conda-forge fiona shapely rasterio pyproj pandas geopandas jupyterlab pystac tqdm einops tifffile
- conda install cudatoolkit=11.6 -c pytorch -c conda-forge
- conda install pytorch==1.121 -c pytorch - conda-forge
- conda install torchvision=0.13.1 -c pytorch -c conda-forge
- conda install torchaudio=0.12.1 -c pytorch -c conda-forge
- pip install pytorch-lightning==1.8.2
- cd [cloned folder]
- pip install -e ./
{
"FloodPlanet": "/media/mule/Projects/NASA/CSDAP/Data/CombinedDataset_1122/"
}
find . -name '*.py' -print0 | xargs -0 yapf -i
python ./st_water_seg/fit.py
python ./st_water_seg/fit.py 'eval_reigon=[region_name_1, region_name_2]'
Mac: SHIFT+CMD+P
Windows: F1
Then search:
Python: Launch TensorBoard
Find path of experiment logs.
./outputs/<date>/<time>/tensorboard_logs/
tensorboard --logdir <path_to_tensorboard_logs>