Object Detection application right in your browser. Serving YOLOv8 in browser using tensorflow.js
with webgl
backend.
The steps are the following:
- First you select an Image to upload 📸
- The AI model will generate a prompt for you 🧠
- You can check, modify and copy to clipboard the prompt for ChatGPT for obtaining a custom recipe 🍱
- Last Step: prepare, enjoy and dont' waste food! ♻️
Setup
git clone https://github.com/Matti88/yolo_recipe.git
cd yolo_recipe
yarn install #Install dependencies
Scripts
yarn start --host # Start dev server
yarn build # Build for productions
YOLOv8n model converted to tensorflow.js.
used model : yolov8n
size : 13 Mb
Use another model
Use another YOLOv8 model.
-
Export YOLOv8 model to tfjs format. Read more on the official documentation
from ultralytics import YOLO # Load a model model = YOLO("yolov8n.pt") # load an official model # Export the model model.export(format="tfjs")
-
Copy
yolov8*_web_model
to./public
-
Update
modelName
inApp.jsx
to new model name... // model configs const modelName = "yolov8*"; // change to new model name ...
-
Done! 😊
Note: Custom Trained YOLOv8 Models
Please update src/utils/labels.json
with your new classes.
pip install label-studio
brew install postgresql
brew install postgis
pip install psycopg2