Skip to content

I have started 100 days of code to document my coding journey and stay consistent also for accountability.

Notifications You must be signed in to change notification settings

Param302/100DaysOfCode-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

I have started 100 days of code to document my coding journey and stay consistent also for accountability.

I am doing Machine Learning starting from Scratch

Daily Tasks

  1. Day - 0 Numpy 🔗
  2. Day - 1 Numpy, Pandas 🔗
  3. Day - 2 Pandas, Data Analysis project 🔗
  4. Day - 3 Pandas (Grouping & Aggregating Data 🔗
  5. Day - 4 Pandas (Cleaning data & Time Series Analysis) 🔗
  6. Day - 5 Pandas (Working with different data formats) & Data Analysis project 🔗
  7. Day - 6 Linear Algebra (Vectors Basics) & Data Analysis project 🔗
  8. Day - 7 Matplotlib library 🔗
  9. Day - 8 Matplotlib Library 🔗
  10. Day - 9 Linear Algebra (Matrices, Linear Transformations) & Data Analysis project 🔗
  11. Day - 10 Matplotlib & Data analysis on Titanic Dataset 🔗
  12. Day - 11 Data analysis on Titanic Dataset 🔗
  13. Day - 12 Data analysis on Titanic Dataset 🔗
  14. Day - 13 Data analysis on Titanic Dataset 🔗
  15. Day - 14 Matplotlib Library 🔗
  16. Day - 15 Matplotlib Library🔗
  17. Day - 16 Matplotlib & Seaborn Library 🔗
  18. Day - 17 Seaborn Library & Data Analysis project 🔗
  19. Day - 18 Seaborn Library & Data Analysis project 🔗
  20. Day - 19 Intro to Machine Learning & House price prediction 🔗
  21. Day - 20 Intermediate Machine Learning & House price prediction 🔗
  22. Day - 21 Intermediate Machine Learning & House price prediction 🔗
  23. Day - 22 Linear Algebra & House price prediction 🔗
  24. Day - 23 Statistics & House price prediction 🔗
  25. Day - 24 Linear Algebra & Statistics 🔗
  26. Day - 25 Feature Engineering & House price preidction 🔗
  27. Day - 26 Feature Engineering 🔗
  28. Day - 27 Feature Engineering & House price prediction 🔗
  29. Day - 28 Linear Algebra & PCA 🔗
  30. Day - 29 Linear Algebra & Statistics 🔗
  31. Day - 30 Titanic dataset prediction & GHW hackathon 🔗
  32. Day - 31 Titanic dataset prediction & GHW hackathon 🔗
  33. Day - 32 Titanic dataset prediction & GHW hackathon 🔗
  34. Day - 33 Titanic dataset prediction & GHW hackathon 🔗
  35. Day - 34 Titanic dataset prediction & GHW hackathon 🔗
  36. Day - 35 Regression & Classification Random Forest 🔗
  37. Day - 36 Started ML Speicalization course & Revised Mathematics 🔗
  38. Day - 37 Supervised vs unsupervised learning and Regression model 🔗
  39. Day - 38 Linear Regression and Notations in ML 🔗
  40. Day - 39 Linear Regression and it's Cost function 🔗
  41. Day - 40 Working of Cost function 🔗
  42. Day - 41 Gradient Descent 🔗
  43. Day - 42 Completed Week 1 of ML course & Gradient Descent 🔗
  44. Day - 43 Linear regression with mutliple variables 🔗
  45. Day - 44 Vectorization and Gradient Descent 🔗
  46. Day - 45 Feature Scaling 🔗
  47. Day - 46 Gradient Descent and Simple Linear Regression code 🔗
  48. Day - 47 Feature Engineering and Polynomial Regression 🔗
  49. Day - 48 (Week 2 assignment) Linear Regression with Gradient Descent code 🔗
  50. Day - 49 Linear Regression code in Python 🔗
  51. Day - 50 Logistic Regression and Sigmoid function 🔗

About

I have started 100 days of code to document my coding journey and stay consistent also for accountability.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published