Skip to content

PathOnAI/runpod-stable-diffusion-3.5-large-worker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Stable Diffusion 3.5 Large Worker Template

A specialized worker template for building custom RunPod Endpoint API workers utilizing the Stable Diffusion 3.5 Large model. This implementation supports various aspect ratios, guidance scales, and inference steps customization.

Docker Container

The ready-to-use Docker container is available on Docker Hub:

thehunter911/stbldiff3.5-large-runpod-serverless

which can be used to deploy onto Runpod Serverless endpoint directly.

You can also pull it using:

docker pull thehunter911/stbldiff3.5-large-runpod-serverless

Input Parameters

Parameter Type Default Description
prompt string required The text description of the image you want to generate
aspect_ratio string "1:1" Image aspect ratio. See supported values below
guidance_scale float 0.0 How closely the model follows the prompt
num_inference_steps integer 1 Number of denoising steps

Supported Aspect Ratios

  • "16:9" - Widescreen (1024×576)
  • "1:1" - Square (1024×1024)
  • "21:9" - Ultra-wide (1024×439)
  • "2:3" - Portrait (683×1024)
  • "3:2" - Landscape (1024×683)
  • "4:5" - Portrait (819×1024)
  • "5:4" - Landscape (1024×819)
  • "9:16" - Vertical/Mobile (576×1024)
  • "9:21" - Vertical ultra-wide (439×1024)

Example Input

{
    "input": {
        "prompt": "An image of a cat with a hat on",
        "aspect_ratio": "16:9",
        "guidance_scale": 0.0,
        "num_inference_steps": 1
    }
}

Example Output

The output is a base64 encoded string of the generated image. Example:

...

Viewing the Output

To view the generated image, you can decode the base64 string using Python:

import base64
from PIL import Image
import io

# Replace 'base64_string' with your actual base64 string
base64_string = "iVBORw0KGgoAAAANSUhEUgAA..."
image_data = base64.b64decode(base64_string)
image = Image.open(io.BytesIO(image_data))
image.show()

Performance Notes

This implementation uses torch.float16 with fp16 variant for optimal inference performance on consumer GPUs. This configuration provides:

  • Faster inference speed
  • Lower memory usage
  • Better hardware compatibility
  • Optimal for generation tasks

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published