Skip to content

This example demonstrates how to use PDL library to measure all the ADC channels on the Arduino ADC header.

License

Notifications You must be signed in to change notification settings

RutronikSystemSolutions/RDK2_Arduino_ADC_DMA_PDL

Repository files navigation

RDK2 Arduino ADC DMA PDL Example

Rutronik Development Kit Programmable System-on-Chip CY8C6245AZI-S3D72 "Arduino ADC DMA PDL " Example.

This example demonstrates how to use PDL library to measure all the ADC channels on the Arduino ADC header.

Requirements

Supported toolchains (make variable 'TOOLCHAIN')

  • GNU Arm® Embedded Compiler v11.3.1 (GCC_ARM) - Default value of TOOLCHAIN

Using the code example

Create the project and open it using one of the following:

In Eclipse IDE for ModusToolbox™ software
  1. Click the New Application link in the Quick Panel (or, use File > New > ModusToolbox™ Application). This launches the Project Creator tool.

  2. Pick a kit supported by the code example from the list shown in the Project Creator - Choose Board Support Package (BSP) dialog.

    When you select a supported kit, the example is reconfigured automatically to work with the kit. To work with a different supported kit later, use the Library Manager to choose the BSP for the supported kit. You can use the Library Manager to select or update the BSP and firmware libraries used in this application. To access the Library Manager, click the link from the Quick Panel.

    You can also just start the application creation process again and select a different kit.

    If you want to use the application for a kit not listed here, you may need to update the source files. If the kit does not have the required resources, the application may not work.

  3. In the Project Creator - Select Application dialog, choose the example by enabling the checkbox.

  4. (Optional) Change the suggested New Application Name.

  5. The Application(s) Root Path defaults to the Eclipse workspace which is usually the desired location for the application. If you want to store the application in a different location, you can change the Application(s) Root Path value. Applications that share libraries should be in the same root path.

  6. Click Create to complete the application creation process.

For more details, see the Eclipse IDE for ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mt_ide_user_guide.pdf).

In command-line interface (CLI)

ModusToolbox™ software provides the Project Creator as both a GUI tool and the command line tool, "project-creator-cli". The CLI tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the {ModusToolbox™ software install directory}/tools_{version}/project-creator/ directory.

Use a CLI terminal to invoke the "project-creator-cli" tool. On Windows, use the command line "modus-shell" program provided in the ModusToolbox™ software installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox™ software tools. You can access it by typing modus-shell in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.

The "project-creator-cli" tool has the following arguments:

Argument Description Required/optional
--board-id Defined in the <id> field of the BSP manifest Required
--app-id Defined in the <id> field of the CE manifest Required
--target-dir Specify the directory in which the application is to be created if you prefer not to use the default current working directory Optional
--user-app-name Specify the name of the application if you prefer to have a name other than the example's default name Optional

The following example clones the "Hello world" application with the desired name "MyHelloWorld" configured for the CY8CPROTO-062-4343W BSP into the specified working directory, C:/mtb_projects:

project-creator-cli --board-id CY8CPROTO-062-4343W --app-id mtb-example-hal-hello-world --user-app-name MyHelloWorld --target-dir "C:/mtb_projects"

Note: The project-creator-cli tool uses the git clone and make getlibs commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mtb_user_guide.pdf).

To work with a different supported kit later, use the Library Manager to choose the BSP for the supported kit. You can invoke the Library Manager GUI tool from the terminal using make modlibs command or use the Library Manager CLI tool "library-manager-cli" to change the BSP.

The "library-manager-cli" tool has the following arguments:

Argument Description Required/optional
--add-bsp-name Name of the BSP that should be added to the application Required
--set-active-bsp Name of the BSP that should be as active BSP for the application Required
--add-bsp-version Specify the version of the BSP that should be added to the application if you do not wish to use the latest from manifest Optional
--add-bsp-location Specify the location of the BSP (local/shared) if you prefer to add the BSP in a shared path Optional

Following example adds the CY8CPROTO-062-4343W BSP to the already created application and makes it the active BSP for the app:

library-manager-cli --project "C:/mtb_projects/MyHelloWorld" --add-bsp-name CY8CPROTO-062-4343W --add-bsp-version "latest-v4.X" --add-bsp-location "local"

library-manager-cli --project "C:/mtb_projects/MyHelloWorld" --set-active-bsp APP_CY8CPROTO-062-4343W
In third-party IDEs

Use one of the following options:

  • Use the standalone Project Creator tool:

    1. Launch Project Creator from the Windows Start menu or from {ModusToolbox™ software install directory}/tools_{version}/project-creator/project-creator.exe.

    2. In the initial Choose Board Support Package screen, select the BSP, and click Next.

    3. In the Select Application screen, select the appropriate IDE from the Target IDE drop-down menu.

    4. Click Create and follow the instructions printed in the bottom pane to import or open the exported project in the respective IDE.


  • Use command-line interface (CLI):

    1. Follow the instructions from the In command-line interface (CLI) section to create the application.

    2. Export the application to a supported IDE using the make <ide> command.

    3. Follow the instructions displayed in the terminal to create or import the application as an IDE project.

For a list of supported IDEs and more details, see the "Exporting to IDEs" section of the ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mtb_user_guide.pdf).

Operation

The firmware example uses KitProg3 Debug UART for the debug output. The ADC peripheral measures all the Arduino ADC channels and transfers converted data to the allocated memory in RAM using DMA. ADC peripheral is triggered by the hardware timer at fixed sample rate and runs continuously without CPU intervention. Only DMA interrupt needs to be serviced each time the DMA completes data transfer. Most of the configuration is done using the "Device Configurator". Further initialization is done in a function where sampling timer, ADC and DMA are also started:

cy_rslt_t app_hw_init(void)

The data is read from the data array and converted to millivolts every second. The result can be seen in a terminal:

Debugging

If you successfully have imported the example, the debug configurations are already prepared to use with a the KitProg3, MiniProg4, or J-link. Open the ModusToolbox perspective and find the Quick Panel. Click on the desired debug launch configuration and wait for the programming to complete and debugging process to start.

Legal Disclaimer

The evaluation board including the software is for testing purposes only and, because it has limited functions and limited resilience, is not suitable for permanent use under real conditions. If the evaluation board is nevertheless used under real conditions, this is done at one’s responsibility; any liability of Rutronik is insofar excluded.

About

This example demonstrates how to use PDL library to measure all the ADC channels on the Arduino ADC header.

Resources

License

Stars

Watchers

Forks

Packages

No packages published