we used each of this DataSets for Image Classification training
Resultat of UC Merced Land DataSet After Image Classification Training
Testing the classification of one batch of Pictures from UC Merced Land Use Dataset
graph represent the values of both of cost
and accuracy
each epoch
you can use this model to classify any DataSet just follow the 4 next instruction
- install tensorflow 1.6 matplotlib opencv imutils
pip install tensorflow matplotlib opencv-python imutils
- to install tensorflow gpu matplotlib opencv
To Train Model for different DataSets or Different Classification follow the steps :
python dataSetGenerator.py [-h] --path path [--SaveTo SaveTo] [--resize resize]
[--resize_to resize_to] [--percentage percentage]
[--dataAug dataAugmentation]
python dataSetGenerator.py --path Desktop/SIRI-WHU --resize --resize_to 200
image dataSet as numpy file.
picture dataSets
|
|----------class-1
| . |-------image-1
| . | .
| . | .
| . | .
| . |-------image-n
| .
|-------class-n
optional arguments:
-h, --help show this help message and exit
--path path the path for picture dataSets folder (/)
--SaveTo SaveTo the path when we save dataSet (/)
--resize resize choose resize the pictures or not
--resize_to resize_to
the new size of pictures
--percentage percentage
how many pictures you want to use for training
--dataAug dataAugmentation
apply data Augmentation Strategy
python train_vgg19.py [-h] --dataset dataset [--batch batch] [--epochs epochs]
python train_vgg19.py --dataset SIRI-WHU
Train vgg19 [-h] --dataset dataset [--batch batch] [--epochs epochs]
Simple tester for the vgg19_trainable
optional arguments:
-h, --help show this help message and exit
--dataset dataset DataSet Name
--batch batch batch size
--epochs epochs number of epoch to train the network
to test your model
python test_vgg19.py [-h] --dataset dataset [--batch batch]
python test_vgg19.py --dataset SIRI-WHU
tester for the vgg19_trainable
optional arguments:
-h, --help show this help message and exit
--dataset dataset DataSet Name
--batch batch batch size
to Draw Confusion matrix (the output in images)
python confusion_matrix.py -h [-h] --dataset dataset [--batch batch] [--showPic showPic]
Draw Confusion Matrix for the vgg19
optional arguments:
-h, --help show this help message and exit
--dataset dataset DataSet Name
--batch batch batch size
--showPic showPic Show patch of picture each epoch
pip install python-nmap
- Set Workers and pss (parameter servers) devices name in train_vgg19_distibuted
workers = ['PC1','PC2']
pss = ['PC3']