Skip to content

This project focuses on developing a visual memory simulator using ChampSim, an efficient trace-based simulator for microarchitecture research. Our simulator features a graphical user interface (GUI) designed to display the usage of data cache in real-time, providing an interactive way to understand memory access patterns and cache behaviour.

License

Notifications You must be signed in to change notification settings

Smriti-26/Visual-Memory-Simulator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ChampSim

ChampSim is a trace-based simulator for a microarchitecture study. You can sign up to the public mailing list by sending an empty mail to champsim+subscribe@googlegroups.com. Traces for the 3rd Data Prefetching Championship (DPC-3) can be found from here (https://dpc3.compas.cs.stonybrook.edu/?SW_IS). A set of traces used for the 2nd Cache Replacement Championship (CRC-2) can be found from this link. (http://bit.ly/2t2nkUj)

Clone ChampSim repository

git clone https://github.com/ChampSim/ChampSim.git

Compile

ChampSim takes five parameters: Branch predictor, L1D prefetcher, L2C prefetcher, LLC replacement policy, and the number of cores. For example, ./build_champsim.sh bimodal no no lru 1 builds a single-core processor with bimodal branch predictor, no L1/L2 data prefetchers, and the baseline LRU replacement policy for the LLC.

$ ./build_champsim.sh bimodal no no no no lru 1

$ ./build_champsim.sh ${BRANCH} ${L1I_PREFETCHER} ${L1D_PREFETCHER} ${L2C_PREFETCHER} ${LLC_PREFETCHER} ${LLC_REPLACEMENT} ${NUM_CORE}

Download DPC-3 trace

Professor Daniel Jimenez at Texas A&M University kindly provided traces for DPC-3. Use the following script to download these traces (~20GB size and max simpoint only).

$ cd scripts

$ ./download_dpc3_traces.sh

Run simulation

Execute run_champsim.sh with proper input arguments. The default TRACE_DIR in run_champsim.sh is set to $PWD/dpc3_traces.

  • Single-core simulation: Run simulation with run_champsim.sh script.
Usage: ./run_champsim.sh [BINARY] [N_WARM] [N_SIM] [TRACE] [OPTION]
$ ./run_champsim.sh bimodal-no-no-no-no-lru-1core 1 10 400.perlbench-41B.champsimtrace.xz

${BINARY}: ChampSim binary compiled by "build_champsim.sh" (bimodal-no-no-lru-1core)
${N_WARM}: number of instructions for warmup (1 million)
${N_SIM}:  number of instructinos for detailed simulation (10 million)
${TRACE}: trace name (400.perlbench-41B.champsimtrace.xz)
${OPTION}: extra option for "-low_bandwidth" (src/main.cc)

Simulation results will be stored under "results_${N_SIM}M" as a form of "${TRACE}-${BINARY}-${OPTION}.txt".

  • Multi-core simulation: Run simulation with run_4core.sh script.
Usage: ./run_4core.sh [BINARY] [N_WARM] [N_SIM] [N_MIX] [TRACE0] [TRACE1] [TRACE2] [TRACE3] [OPTION]
$ ./run_4core.sh bimodal-no-no-no-lru-4core 1 10 0 400.perlbench-41B.champsimtrace.xz \\
  401.bzip2-38B.champsimtrace.xz 403.gcc-17B.champsimtrace.xz 410.bwaves-945B.champsimtrace.xz

Note that we need to specify multiple trace files for run_4core.sh. N_MIX is used to represent a unique ID for mixed multi-programmed workloads.

Add your own branch predictor, data prefetchers, and replacement policy

Copy an empty template

$ cp branch/branch_predictor.cc branch/mybranch.bpred
$ cp prefetcher/l1d_prefetcher.cc prefetcher/mypref.l1d_pref
$ cp prefetcher/l2c_prefetcher.cc prefetcher/mypref.l2c_pref
$ cp prefetcher/llc_prefetcher.cc prefetcher/mypref.llc_pref
$ cp replacement/llc_replacement.cc replacement/myrepl.llc_repl

Work on your algorithms with your favorite text editor

$ vim branch/mybranch.bpred
$ vim prefetcher/mypref.l1d_pref
$ vim prefetcher/mypref.l2c_pref
$ vim prefetcher/mypref.llc_pref
$ vim replacement/myrepl.llc_repl

Compile and test

$ ./build_champsim.sh mybranch mypref mypref mypref myrepl 1
$ ./run_champsim.sh mybranch-mypref-mypref-mypref-myrepl-1core 1 10 bzip2_183B

How to create traces

We have included only 4 sample traces, taken from SPEC CPU 2006. These traces are short (10 million instructions), and do not necessarily cover the range of behaviors your replacement algorithm will likely see in the full competition trace list (not included). We STRONGLY recommend creating your own traces, covering a wide variety of program types and behaviors.

The included Pin Tool champsim_tracer.cpp can be used to generate new traces. We used Pin 3.2 (pin-3.2-81205-gcc-linux), and it may require installing libdwarf.so, libelf.so, or other libraries, if you do not already have them. Please refer to the Pin documentation (https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/) for working with Pin 3.2.

Get this version of Pin:

wget http://software.intel.com/sites/landingpage/pintool/downloads/pin-3.2-81205-gcc-linux.tar.gz

Note on compatibility: If you are using newer linux kernels/Ubuntu versions (eg. 20.04LTS), you might run into issues (such as [1],[2],[3]) with the PIN3.2. ChampSim tracer works fine with newer PIN tool versions that can be downloaded from here. PIN3.17 is confirmed to work with Ubuntu 20.04.1 LTS.

Once downloaded, open tracer/make_tracer.sh and change PIN_ROOT to Pin's location. Run ./make_tracer.sh to generate champsim_tracer.so.

Use the Pin tool like this

pin -t obj-intel64/champsim_tracer.so -- <your program here>

The tracer has three options you can set:

-o
Specify the output file for your trace.
The default is default_trace.champsim

-s <number>
Specify the number of instructions to skip in the program before tracing begins.
The default value is 0.

-t <number>
The number of instructions to trace, after -s instructions have been skipped.
The default value is 1,000,000.

For example, you could trace 200,000 instructions of the program ls, after skipping the first 100,000 instructions, with this command:

pin -t obj/champsim_tracer.so -o traces/ls_trace.champsim -s 100000 -t 200000 -- ls

Traces created with the champsim_tracer.so are approximately 64 bytes per instruction, but they generally compress down to less than a byte per instruction using xz compression.

Evaluate Simulation

ChampSim measures the IPC (Instruction Per Cycle) value as a performance metric.
There are some other useful metrics printed out at the end of simulation.

Good luck and be a champion!

About

This project focuses on developing a visual memory simulator using ChampSim, an efficient trace-based simulator for microarchitecture research. Our simulator features a graphical user interface (GUI) designed to display the usage of data cache in real-time, providing an interactive way to understand memory access patterns and cache behaviour.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published