This project implements a Retrieval-Augmented Generation (RAG) system using NVIDIA's NIM framework.
NVIDIA NIM (NVIDIA Inference Microservices) is a framework that simplifies the deployment and scaling of AI models. For RAG applications, NIM provides several key advantages:
- High-Performance Inference: Optimized for NVIDIA GPUs with TensorRT acceleration
- Multi-Modal Support: Handle text, images, audio, and video in RAG pipelines
- Scalable Architecture: Built-in support for distributed deployments
- Production-Ready: Includes monitoring, logging, and performance optimization tools
- Text-to-Text RAG
- Multi-Modal RAG (Images + Text)
- Streaming Response Generation
- Custom Knowledge Base Integration
- Vector Store Compatibility (FAISS, Milvus, etc.)
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Install NVIDIA NIM:
pip install nvidia-nim
config/
: Configuration files for model and trainingdata/
: Data storageraw/
: Raw input dataprocessed/
: Processed data for training
src/
: Source codedata/
: Data processing utilitiesmodel/
: RAG model implementationtraining/
: Training scripts and utilities
tests/
: Unit tests
docker pull nvcr.io/nvidia/nim:latest
docker run --gpus all -p 8000:8000 nvcr.io/nvidia/nim:latest
- Use NVIDIA GPU Operator for GPU support
- Deploy using Helm charts (provided in
/kubernetes
directory) - Scale horizontally using Kubernetes HPA
- Enable TensorRT acceleration
- Use Triton Inference Server for model serving
- Implement caching strategies for frequently accessed data
- Use NVIDIA RAPIDS for data preprocessing
from src.model.rag_model import RAGModel
model = RAGModel(config)
response = model.generate("Your query here")
# Image + Text RAG
response = model.generate(
text_query="Describe this image",
image_path="path/to/image.jpg"
)
for chunk in model.generate_stream("Your query here"):
print(chunk, end="", flush=True)
NIM provides built-in monitoring capabilities:
- Prometheus metrics endpoint
- Grafana dashboard templates
- Custom metric collection
- Performance profiling tools
-
Data Management
- Implement versioning for knowledge bases
- Regular updates of vector stores
- Data validation pipelines
-
Model Optimization
- Use quantization for production
- Implement model caching
- Regular model performance benchmarking
-
Scaling Considerations
- Load balancing configuration
- Resource allocation guidelines
- High availability setup
-
Security
- API authentication
- Rate limiting
- Data encryption at rest and in transit
Common issues and solutions:
- GPU memory management
- Scaling bottlenecks
- Knowledge base updates
- Model serving optimization
Please read CONTRIBUTING.md for details on our code of conduct and the process for submitting pull requests.
This project is licensed under the MIT License - see the LICENSE.md file for details.
- NVIDIA NIM team
- Community contributors
- Related projects and inspirations git s
For support:
- NVIDIA Developer Forums
- GitHub Issues
- Documentation Wiki