Skip to content

Tejan4422/nvdia_RAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

RAG NVIDIA NIM Implementation

This project implements a Retrieval-Augmented Generation (RAG) system using NVIDIA's NIM framework.

About NVIDIA NIM

NVIDIA NIM (NVIDIA Inference Microservices) is a framework that simplifies the deployment and scaling of AI models. For RAG applications, NIM provides several key advantages:

Key Features

  • High-Performance Inference: Optimized for NVIDIA GPUs with TensorRT acceleration
  • Multi-Modal Support: Handle text, images, audio, and video in RAG pipelines
  • Scalable Architecture: Built-in support for distributed deployments
  • Production-Ready: Includes monitoring, logging, and performance optimization tools

RAG Capabilities

  • Text-to-Text RAG
  • Multi-Modal RAG (Images + Text)
  • Streaming Response Generation
  • Custom Knowledge Base Integration
  • Vector Store Compatibility (FAISS, Milvus, etc.)

Setup

  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Install NVIDIA NIM:
pip install nvidia-nim

Project Structure

  • config/: Configuration files for model and training
  • data/: Data storage
    • raw/: Raw input data
    • processed/: Processed data for training
  • src/: Source code
    • data/: Data processing utilities
    • model/: RAG model implementation
    • training/: Training scripts and utilities
  • tests/: Unit tests

Production Deployment

Docker Deployment

docker pull nvcr.io/nvidia/nim:latest
docker run --gpus all -p 8000:8000 nvcr.io/nvidia/nim:latest

Kubernetes Deployment

  1. Use NVIDIA GPU Operator for GPU support
  2. Deploy using Helm charts (provided in /kubernetes directory)
  3. Scale horizontally using Kubernetes HPA

Performance Optimization

  • Enable TensorRT acceleration
  • Use Triton Inference Server for model serving
  • Implement caching strategies for frequently accessed data
  • Use NVIDIA RAPIDS for data preprocessing

Usage Examples

Basic RAG Implementation

from src.model.rag_model import RAGModel
model = RAGModel(config)
response = model.generate("Your query here")

Multi-Modal RAG

# Image + Text RAG
response = model.generate(
    text_query="Describe this image",
    image_path="path/to/image.jpg"
)

Streaming Response

for chunk in model.generate_stream("Your query here"):
    print(chunk, end="", flush=True)

Monitoring and Metrics

NIM provides built-in monitoring capabilities:

  • Prometheus metrics endpoint
  • Grafana dashboard templates
  • Custom metric collection
  • Performance profiling tools

Best Practices

  1. Data Management

    • Implement versioning for knowledge bases
    • Regular updates of vector stores
    • Data validation pipelines
  2. Model Optimization

    • Use quantization for production
    • Implement model caching
    • Regular model performance benchmarking
  3. Scaling Considerations

    • Load balancing configuration
    • Resource allocation guidelines
    • High availability setup
  4. Security

    • API authentication
    • Rate limiting
    • Data encryption at rest and in transit

Troubleshooting

Common issues and solutions:

  • GPU memory management
  • Scaling bottlenecks
  • Knowledge base updates
  • Model serving optimization

Contributing

Please read CONTRIBUTING.md for details on our code of conduct and the process for submitting pull requests.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Acknowledgments

  • NVIDIA NIM team
  • Community contributors
  • Related projects and inspirations git s

Support

For support:

  • NVIDIA Developer Forums
  • GitHub Issues
  • Documentation Wiki

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages