Skip to content

Commit

Permalink
small overhaul of Sec. 4.3
Browse files Browse the repository at this point in the history
  • Loading branch information
UlrikBuchholtz committed Aug 8, 2023
1 parent 01fd86a commit c58acd7
Show file tree
Hide file tree
Showing 3 changed files with 98 additions and 72 deletions.
2 changes: 1 addition & 1 deletion circle.tex
Original file line number Diff line number Diff line change
Expand Up @@ -394,7 +394,7 @@ \section{The integers}
and ordering relations.

One well-known self-equivalence is \emph{negation}, ${-}:\zet\to\zet$,
\index{negation!of integer}\glossary(1negation){$-z$}{negation of integer}
\index{negation!of integer}\glossary(1negation){$-z$}{negation of an integer $z$}
inductively defined by setting
$-\iota_+(n)\defeq \iota_-(-n)$,
$-\iota_-(m)\defeq \iota_+(-m)$,
Expand Down
146 changes: 81 additions & 65 deletions group.tex
Original file line number Diff line number Diff line change
Expand Up @@ -659,42 +659,45 @@ \section{Abstract groups}

\begin{enumerate}
\item
There is an element $\refl a : a=a$.
There is an element $\refl a : a \eqto a$.
(See page \pageref{rules-for-equality}, item \ref{E2}.)
We set $e \defeq \refl a$ as notation for the time being.
\item
For $g : a=a$, the inverse $g^{-1} : a=a$ was defined in \cref{def:eq-symm}.
For $g : a \eqto a$, the inverse $g^{-1} : a \eqto a$ was defined in \cref{def:eq-symm}.
Because it was defined by path induction, this inverse operation satisfies $e^{-1} \jdeq e$.
\item
For $g, h : a=a$, the product $h \cdot g : a=a$ was defined in \cref{def:eq-trans}.
For $g, h : a \eqto a$, the product $h \cdot g : a \eqto a$ was defined in \cref{def:eq-trans}.
Because it was defined by path induction, this product operation satisfies $e \cdot g \jdeq g$.
\end{enumerate}

For any elements $g,g_1,g_2,g_3:a=a$, we consider the following four equations:
For any elements $g,g_1,g_2,g_3:a\eqto a$, we consider the following four equations:
\begin{enumerate}
\item
\label{it:right-unit} \emph{the right unit law:} $g=g\cdot e$,
\label{it:right-unit} \emph{the right unit law:} $g \eqto g\cdot e$,
\item
\label{it:left-unit} \emph{the left unit law:} $g=e\cdot g$,
\label{it:left-unit} \emph{the left unit law:} $g \eqto e\cdot g$,
\item
\label{it:associativity} \emph{the associativity law:} $g_1\cdot(g_2\cdot g_3)=(g_1\cdot g_2)\cdot g_3$,
\label{it:associativity} \emph{the associativity law:} $g_1\cdot(g_2\cdot g_3)
\eqto (g_1\cdot g_2)\cdot g_3$,
\item
\label{it:inverse} \emph{the law of inverses:} $g\cdot \inv g = e$.
\label{it:inverse} \emph{the law of inverses:} $g\cdot \inv g \eqto e$.
\end{enumerate}

In \cref{xca:path-groupoid-laws}, the reader has constructed explicit elements of these equations. If $a=a$ were a set, then the equations
In \cref{xca:path-groupoid-laws}, the reader has constructed explicit elements of these equations. If $a\eqto a$ were a set, then the equations
above would all be propositions, and then, in line with the convention adopted in \cref{sec:props-sets-grpds}, we could simply say that
\cref{xca:path-groupoid-laws} establishes that the equations hold. That motivates the following definition, in which we introduce a new set $S$
to play the role of $a=a$. We introduce a new element $e:S$ to play the role of $\refl a$, a new multiplication operation, and a new inverse
to play the role of $a\eqto a$.
We introduce a new element $e:S$ to play the role of $\refl a$, a new multiplication operation, and a new inverse
operation. The original type $A$ and its element $a$ play no further role.

\begin{definition}\label{def:abstractgroup}
An \emph{abstract group} consists of the following data.
An \emph{abstract group}\index{abstract group}\index{group!abstract}
consists of the following data.
\begin{enumerate}
\item\label{struc:under-set} A type $S$.
\par \noindent
Moreover, the type $S$ should be a set. It is called the \emph{underlying set}.
\item\label{struc:unit} An element $e:S$, called the \emph{unit} or the \emph{neutral element}.
\item\label{struc:unit} An element $e:S$, called the \emph{unit} or the \emph{neutral element}.\index{neutral element}
\item\label{struc:mult-op} A function $S\to S\to S$, called \emph{multiplication},
taking two elements $g_1,g_2:S$ to their \emph{product}, denoted by $g_1\cdot g_2:S$.
\par \noindent
Expand All @@ -707,7 +710,7 @@ \section{Abstract groups}
taking an element $g:S$ to its \emph{inverse} $g^{-1}$.
\par \noindent
Moreover, the following equation should hold, for all $g:S$.
\begin{enumerate}[label=(\alph*),ref=\ref{struc:inv-op} (\alph*)]
\begin{enumerate}[label=(\alph*),ref=\ref{struc:inv-op} (\alph*),resume*]
\item\label{axiom:inv-law} $ g\cdot g^{-1} = e$ (the \emph{law of inverses})
\qedhere
\end{enumerate}
Expand Down Expand Up @@ -751,7 +754,7 @@ \section{Abstract groups}
\ref{struc:inv-op} of the structure (including with the property
\ref{axiom:inv-law}), some authors assume the existence of inverses
by positing the following property.
\begin{enumerate}[resume*]
\begin{enumerate}[start=5]
\item\label{axiom:mere-inverse} for all $g:S$ there exists an element
$h:S$ such that $e = g \cdot h$.
\end{enumerate}
Expand All @@ -769,7 +772,7 @@ \section{Abstract groups}
\label{lem:group-inv-operation}%
Given a set $S$ together with $e$ and $\cdot$ as in
\cref{def:abstractgroup} satisfying the unit laws, the associativity
law, and property \ref{axiom:mere-inverse}, there is a ``inverse'' function
law, and property \ref{axiom:mere-inverse}, there is an ``inverse'' function
$S \to S$ having property \ref{axiom:inv-law} of \cref{def:abstractgroup}.
\end{lemma}

Expand Down Expand Up @@ -815,11 +818,12 @@ \section{Abstract groups}
\mathrm{GroupLaws}(S,e,\mu,\iota) & \defequi \mathrm{MonoidLaws}(S,e,\mu) \times \mathrm{InverseLaw}(S,e,\mu,\iota)
\end{align*}
Now we define the type of abstract groups in terms of those propositions.
\begin{align*}
\typegroup^\abstr \defequi \sum_{S:\UU} & \sum_{e:S}\sum_{\mu{}:S\to S\to S} \sum_{\iota\colon S\to S} \mathrm{GroupLaws}(S,e,\mu,\iota)
\end{align*}
\[
\typegroup^\abstr \defequi \sum_{S:\UU} \sum_{e:S}\sum_{\mu{}:S\to S\to S}
\sum_{\iota\colon S\to S} \mathrm{GroupLaws}(S,e,\mu,\iota)
\]

Thus, following the convention introduced in \cref{rem:iterated-sums},
Thus, following the convention introduced in \cref{rem:iterated-sums},
an abstract group $\mathscr G$ will be a quintuple of the form
$\mathscr G \jdeq (S,e,\mu,\iota,!)$. For brevity, we will usually omit the proof of the properties from the display, since it's unique, and write an abstract
group as though it were a quadruple $\mathscr G \jdeq (S,e,\mu,\iota)$.
Expand All @@ -831,13 +835,22 @@ \section{Abstract groups}
\end{remark}

\begin{remark}
If $\mathcal G=(S,e,\mu,\iota)$ and $\mathcal G'=(S',e',\mu',\iota')$ are abstract groups, an element of the identity type $\mathcal
G=\mathcal G'$ consists of quite a lot of information, provided we interpret it by repeated application of \cref{lem:isEq-pair=}. First and
foremost, we need an identity $p:S=S'$ of sets, but from there on the information is a proof of a conjunction of propositions (this is more
interesting for \inftygps). An analysis shows that this conjunction can be shortened to the equations $e'=p(e)$ and
If $\mathcal G\jdeq (S,e,\mu,\iota)$ and $\mathcal G'\jdeq(S',e',\mu',\iota')$
are abstract groups, an element of the identity type
$\mathcal G\eqto\mathcal G'$ consists of quite a lot of information, provided we interpret it by repeated application of \cref{lem:isEq-pair=}. First and
foremost, we need an identification $p:S\eqto S'$ of sets, but from there on the information is a proof of a conjunction of propositions.\footnote{%
This is more interesting for \inftygps:
In fact, we don't know how to define
the type of ``abstract \inftygps'' in a way similar to~\cref{def:abstractgroup}:
such a definition would require infinitely many levels of operations producing
identifications of instances of operations of lower levels.
And an identification would similarly require infinitely
many operations identifying the operations at all levels.}
An analysis shows that this conjunction can be shortened to the equations $e'=p(e)$ and
$\mu'(p(s),p(t))=p(\mu(s,t))$. A convenient way of obtaining an identity $p$ that preserves these equations is to apply univalence to an
equivalence $f: S \equiv S'$ that preserves them.
We call such a function an \emph{isomorphism of abstract groups}.
equivalence $f: S \equivto S'$ that preserves them.
We call such a function an \emph{isomorphism of abstract groups}.%
\index{isomorphism!of abstract groups}
\end{remark}

\begin{xca}
Expand All @@ -857,43 +870,45 @@ \section{Abstract groups}

\begin{xca}
\label{xca:conj}
Let $\mathcal G=(S,e,\mu,\iota)$ be an abstract group and let $g:S$. If $s:S$, let $c^g(s)\defequi g\cdot s\cdot g^{-1}$. Show that the resulting function $c^g:S\to S$ preserves the group structure (for instance $g\cdot(s\cdot s')\cdot g^{-1}=(g\cdot s\cdot g^{-1} )\cdot(g\cdot s\cdot g^{-1})$) and is an equivalence. The resulting identity $c^g:\mathcal G=\mathcal G$ is called \emph{conjugation} by $g$\index{conjugation}.
Let $\mathcal G\jdeq(S,e,\mu,\iota)$ be an abstract group and let $g:S$. If $s:S$, let $c^g(s)\defequi g\cdot s\cdot g^{-1}$. Show that the resulting function $c^g:S\to S$ preserves the group structure (for instance $g\cdot(s\cdot s')\cdot g^{-1}=(g\cdot s\cdot g^{-1} )\cdot(g\cdot s\cdot g^{-1})$) and is an equivalence. The resulting identification $c^g:\mathcal G\eqto\mathcal G$ is called \emph{conjugation} by $g$.\index{conjugation}
\end{xca}

\begin{remark}
Without the demand that the underlying type of an abstract group or monoid is a set, life would be more complicated. For instance, for the
case when $g$ is $e$, the unit laws \ref{axiom:unit-laws} of \cref{def:abstractgroup} would provide \emph{two} (potentially different)
proofs that $e\cdot e = e$, and we would have to separately assume that they agree. This problem vanishes in the setup we adopt below for
\inftygps.
\end{remark}

\begin{xca}
For an element $g$ in an abstract group, prove that
$e=\inv g\cdot g$ and $g=(g^{-1})^{-1}$. In other words (for the
machines among us), given an abstract group $(S,e,\mu,\iota)$,
give an element in the proposition
\begin{displaymath}
\prod_{g:S} (e=\mu(\iota(g))(g))\times
(g=\iota(\iota(g))).\qedhere
\end{displaymath}
\end{xca}
\begin{xca}\label{xca:typemonoidisgroupoid}
Prove that the types of monoids and abstract groups are groupoids.
\end{xca}
\begin{xca}
\label{xca:cheapgroup}
There is a leaner way of characterizing what an abstract group is:
define a \emph{sheargroup} to be a set $S$ together with an element $e:S$,
a function $\blank * \blank: S\to S\to S$, sending $a,b:S$ to $a*b:S$,
and the following propositions,
where we use the shorthand $\bar a\defequi a*e$:
\begin{enumerate}
\item $e*a=a$,
\item $a*a=e$ and
\item $c*(b*a)=\casoverline{(c*\bar b)}*a$,
\end{enumerate}
for all $a,b,c:S$.
Show that the type of abstract groups is equivalent to the type of sheargroups.\footnote{%
\begin{remark}
Without the demand that the underlying type of an abstract group or monoid is a set, life would be more complicated. For instance, for the
case when $g$ is $e$, the unit laws \ref{axiom:unit-laws} of \cref{def:abstractgroup} would provide \emph{two} (potentially different)
identifications $e\cdot e \eqto e$, and we would have to separately assume that they agree. This problem vanishes in the setup we adopt below for
\inftygps.
\end{remark}

\begin{xca}
For an element $g$ in an abstract group,
prove that $e=\inv g\cdot g$ and $g=(g^{-1})^{-1}$. In other words (for the
machines among us), given an abstract group $(S,e,\mu,\iota)$,
give an element in the proposition
\begin{displaymath}
\prod_{g:S} (e=\mu(\iota(g))(g))\times
(g=\iota(\iota(g))).\qedhere
\end{displaymath}
\end{xca}

\begin{xca}\label{xca:typemonoidisgroupoid}
Prove that the types of monoids and abstract groups are groupoids.
\end{xca}

\begin{xca}
\label{xca:cheapgroup}
There is a leaner way of characterizing what an abstract group is:
define a \emph{sheargroup} to be a set $S$ together with an element $e:S$,
a function $\blank * \blank: S\to S\to S$, sending $a,b:S$ to $a*b:S$,
and the following propositions,
where we use the shorthand $\bar a\defequi a*e$:
\begin{enumerate}
\item $e*a=a$,
\item $a*a=e$, and
\item $c*(b*a)=\casoverline{(c*\bar b)}*a$,
\end{enumerate}
for all $a,b,c:S$.
Construct an equivalence from the type of abstract groups to the type of sheargroups.\footnote{%
Hint: setting $a\cdot b\defequi \bar b*a$ gives you an abstract group from a sheargroup and conversely, letting $a*b=b\cdot a^{-1}$ takes you back. On your way you may need at some point to show that $\casoverline{\bar a}=a$: setting $c=\bar a$ and $b=a$ in the third formula will do the trick (after you have established that $\bar e=e$). This exercise may be good to look back to in the many instances where the inverse inserted when ``multiplying from the right by $a$'' is forced by transport considerations.}
\end{xca}
\begin{xca}
Expand All @@ -903,10 +918,11 @@ \section{Abstract groups}
$\blank\circ\blank : S \to S \to S$, sending $a,b:S$ to $a\circ b:S$,
with the property that
\begin{enumerate}
\item for all $a,b,c:S$ we have that $(a\circ c)\circ(b\circ c)=a\circ b$
\item for all $a,b,c:S$ we have that $(a\circ c)\circ(b\circ c)=a\circ b$, and
\item for all $a,c:S$ there is a $b:S$ such that $a\circ b=c$.
\end{enumerate}
Show that the type of Furstenberg groups is equivalent to the type of groups.\footnote{%
Construct an equivalence from the type of Furstenberg groups to the type of
abstract groups.\footnote{%
Hint: show that the function $a\mapsto a\circ a$ is constant, with value, say, $e$. Then show that $S$ together with the ``unit'' $e$, ``multiplication'' $a\cdot b\defequi a\circ(e\circ b)$ and ``inverse'' $b^{-1}\defequi e\circ b$ is an abstract group.}
\end{xca}

Expand Down Expand Up @@ -2810,7 +2826,7 @@ \subsection{Center of a group}
evaluation at $\trunc{\refl {\shape_G}}$ under the sum. The last equivalence
is the contractibility of singleton types.%
% }%
We have just shown that for all $x:\BG$, the type $\sum_{q:x\eqto x}T(q)$ is
contractible. We define now $\hat g(x):x\eqto x$ as the chosen center of
contraction of that type. More precisely, by connectedness of $\BG$, the
Expand Down Expand Up @@ -3458,7 +3474,7 @@ \section{Semidirect products}
$$G \ltimes \tilde H \defeq \mkgroup { \sum_{t:\BG} \B \tilde H(t) }$$
Here the basepoint of the sum is taken to be the point $(\shape_G,\shape_H)$.
(We deduce from \cref{lem:level-n-utils}, \cref{level-n-utils-sum}, that $\sum_{t:\BG} \B \tilde H(t)$ is a groupoid.
See \cref{xca:connected-trivia-1} for a proof that
See \cref{xca:connected-trivia-1} for a proof that
$\sum_{t:\BG} \B \tilde H(t)$ is connected.)
\end{definition}
Expand Down Expand Up @@ -3552,7 +3568,7 @@ \section{The pullback}
\item\label{xca:cardinalityintersectionunion}
If $S$ is finite, then the sum of the cardinalities of $A$ and $B$ is equal to the sum of the cardinalities of $A\cup B$ and $A\cap B$.\qedhere
\end{enumerate}
\end{xca}
\end{xca}
\begin{definition}
\label{def:intersectionofgroups}
Expand Down
22 changes: 16 additions & 6 deletions intro-uf.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1199,7 +1199,9 @@ \section{Equivalences}\label{sec:equivalence}

\begin{definition}
\label{def:type-of-equivalences}
We define the type $X \equivto Y$ of equivalences from $X$ to $Y$ by the following definition.
We define the type $X \equivto Y$ of equivalences from $X$ to $Y$
by the following definition.%
\glossary(2equivto){$\protect\equivto$}{type of equivalences}
\[
(X \equivto Y) \defeq \sum_{f:X\to Y} \isEq(f).\qedhere
\]
Expand Down Expand Up @@ -2180,7 +2182,7 @@ \section{Propositions, sets and groupoids}

\begin{definition}\label{def:neg-eq-ne}
Let $P$ be a proposition as defined above.
We define the \emph{negation} of $P$\glossary(1neg){$\neg P$}{negation}
We define the \emph{negation} of $P$\glossary(1neg){$\neg P$}{negation of a proposition $P$}
by setting $\neg P \defeq (P \to \emptytype)$.

Let $A$ be a \emph{set}, as defined above,
Expand Down Expand Up @@ -2489,9 +2491,13 @@ \section{Propositional truncation and logic}

\begin{definition}\label{def:prop-trunc}
Let $T$ be a type. The \emph{propositional truncation} of $T$
is the type $\Trunc{T}$ defined by the following constructors:
is the type $\Trunc{T}$ defined by the following constructors:%
\index{type!propositional truncation}\index{propositional truncation}%
\index{truncation!propositional}%
\glossary(1truncType){$\protect\Trunc{T}$}{propositional truncation of a type $T$}
\begin{enumerate}
\item an \emph{element} constructor $\trunc{t} : \Trunc{T}$ for all $t:T$;
\item an \emph{element} constructor $\trunc{t} : \Trunc{T}$ for all $t:T$;%
\glossary(1trunc){$\protect\trunc{t}$}{constructor for the propositional truncation $\Trunc{T}$ applied to $t:T$}
\item an \emph{identification} constructor providing an identification of type $x \eqto y$ for all $x,y:\Trunc{T}$.
\end{enumerate}
The identification constructor ensures that $\Trunc{T}$ is a
Expand Down Expand Up @@ -2544,14 +2550,18 @@ \section{Propositional truncation and logic}
we are ready to define logical disjunction and existence.

\begin{definition}
Given propositions $P$ and $Q$, define their \emph{disjunction} by $(P \vee Q) \defeq \Trunc{P \amalg Q}$.
Given propositions $P$ and $Q$, define their \emph{disjunction}
by $(P \vee Q) \defeq \Trunc{P \amalg Q}$.%
\index{disjunction}\glossary(2vee){$\vee$}{disjunction of propositions}
It expresses the property that $P$ is true or $Q$ is true.
\end{definition}

\begin{definition}
Given a type $X$ and a family $P(x)$ of propositions parametrized by a variable $x$ of type $X$,
define a proposition that encodes the property that there exists a member of the family for which
the property is true by $(\exists_{x:X} P(x)) \defeq \Trunc*{\sum_{x:X} P(x)}.$
the property is true by $(\exists_{x:X} P(x)) \defeq \Trunc*{\sum_{x:X} P(x)}.$%
\index{exists}\glossary(2exists){$\protect\exists_{x:X}P(x)$}{proposition expressing
existential quantification}
It expresses the property that there \emph{exists} an element $x:X$ for which the property $P(x)$ is true; the element $x$ is not
given explicitly.
\end{definition}
Expand Down

0 comments on commit c58acd7

Please sign in to comment.