This is the repo to reproduce the results in Fu et al. ``Revisit Unsupervised Effort-Aware Just-in-Time Defect prediction'' . The package is modified basd on the code provoided by Yang et al.
- R Environment
- RWeka, car, usdm, effsize, ScottKnott packages are required. Please run the following commands in R.
install.packages("RWeka")
install.packages("car")
install.packages("usdm")
install.packages("effsize")
install.packages("ScottKnott")
source("exeMain.r")
@inproceedings{fu2017unsupervised,
author = {Fu, Wei and Menzies, Tim},
title = {Revisiting Unsupervised Learning for Defect Prediction},
booktitle = {Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering},
series = {ESEC/FSE 2017},
year = {2017},
pages = {72--83},
numpages = {12},
publisher = {ACM}
}
.
├── LICENSE
├── README.md
└── jit
├── input ## input data
│ ├── bugzilla.csv
│ ├── columba.csv
│ ├── jdt.csv
│ ├── mozilla.csv
│ ├── platform.csv
│ └── postgres.csv
├── output ## reuslts are saved here accordingly
│ ├── cross-project
│ ├── cross-validation
│ └── cross-validation-timewise
└── script_r
├── ReportResults.r
├── core.r
├── evaluate.r
├── exeMain.r ## the start point of R code
├── learner.r ## learners are called here
├── packages
│ ├── EMImputation1.0.1.zip
│ ├── RBFNetwork1.0.8.zip
│ ├── citationKNN1.0.1.zip
│ ├── conjunctiveRule1.0.4.zip
│ ├── gaussianProcesses1.0.1.zip
│ ├── grading1.0.1.zip
│ ├── gridSearch1.0.7.zip
│ ├── gridSearch1.0.8.zip
│ ├── gridSearch1.0.9.zip
│ ├── isotonicRegression1.0.1.zip
│ ├── kernelLogisticRegression1.0.0.zip
│ ├── lazyBayesianRules1.0.1.zip
│ ├── leastMedSquared1.0.1.zip
│ ├── linearForwardSelection1.0.1.zip
│ ├── multiBoostAB1.0.1.zip
│ ├── paceRegression1.0.1.zip
│ ├── partialLeastSquares1.0.4.zip
│ ├── racedIncrementalLogitBoost1.0.1.zip
│ ├── ridor1.0.1.zip
│ ├── rotationForest1.0.2.zip
│ ├── stackingC1.0.1.zip
│ └── userClassifier1.0.3.zip
├── results
└── utils.R