Skip to content

Commit

Permalink
Merge branch 'develop' into fix_custom_gradient
Browse files Browse the repository at this point in the history
  • Loading branch information
ziofil authored Oct 23, 2024
2 parents 305aa68 + 6ab5aec commit 9bdc0e2
Show file tree
Hide file tree
Showing 12 changed files with 1,776 additions and 1,370 deletions.
9 changes: 9 additions & 0 deletions .codecov.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
coverage:
status:
project:
default:
target: 89%
patch:
default:
target: auto
threshold: 0%
47 changes: 0 additions & 47 deletions .coveragerc

This file was deleted.

3 changes: 3 additions & 0 deletions .github/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,9 @@
* Loosen the upper-bound on `thewalrus` and upgrade it.
[(#454)](https://github.com/XanaduAI/MrMustard/pull/454)

* Update major version of `rich` dependency to version 13.
[(#512)](https://github.com/XanaduAI/MrMustard/pull/512)

### Bug fixes
* Fix the bug in the order of indices of the triples for DsMap CircuitComponent.
[(#385)](https://github.com/XanaduAI/MrMustard/pull/385)
Expand Down
2 changes: 1 addition & 1 deletion Makefile
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
PYTHON3 := $(shell which python3 2>/dev/null)
TESTRUNNER := -m pytest tests -p no:warnings
COVERAGE := --cov=mrmustard --cov-report=html:coverage_html_report --cov-append
COVERAGE := --cov=mrmustard --cov-report=html --cov-append

ifdef check
CHECK := --check --diff
Expand Down
3 changes: 2 additions & 1 deletion mrmustard/lab_dev/transformations/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,12 @@
from .attenuator import *
from .base import *
from .bsgate import *
from .cft import *
from .dgate import *
from .fockdamping import *
from .ggate import *
from .gaussrandnoise import *
from .identity import *
from .rgate import *
from .s2gate import *
from .sgate import *
from .cft import *
82 changes: 82 additions & 0 deletions mrmustard/lab_dev/transformations/gaussrandnoise.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# Copyright 2024 Xanadu Quantum Technologies Inc.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

# http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
The class representing a Gaussian random noise channel.
"""

from __future__ import annotations
from typing import Sequence
from mrmustard import math, settings
from mrmustard.utils.typing import RealMatrix
from .base import Channel
from ...physics.representations import Bargmann
from ...physics import triples
from ..utils import make_parameter

__all__ = ["GaussRandNoise"]


class GaussRandNoise(Channel):
r"""
The Gaussian random noise channel.
The number of modes must match half of the size of the Y matrix.
.. code-block ::
>>> import numpy as np
>>> from mrmustard.lab_dev import GaussRandNoise
>>> channel = GaussRandNoise(modes=[1, 2], Y = .2 * np.eye(4))
>>> assert channel.modes == [1, 2]
>>> assert np.allclose(channel.Y.value, .2 * np.eye(4))
Args:
modes: The modes the channel is applied to
Y: The Y matrix of the Gaussian random noise
Y_train: whether the Y matrix is a trainable variable
..details::
The Bargmann representation of the channel is computed via the formulas provided in the paper:
https://arxiv.org/pdf/2209.06069
The channel maps an inout covariance matrix ``cov`` as
..math::
cov \mapsto cov + Y.
"""

short_name = "GRN"

def __init__(
self,
modes: Sequence[int],
Y: RealMatrix,
Y_trainable: bool = False,
):

if Y.shape[-1] // 2 != len(modes):
raise ValueError(
f"The number of modes {len(modes)} does not match the dimension of the "
f"Y matrix {Y.shape[-1] // 2}."
)

if (math.real(math.eigvals(Y)) >= -settings.ATOL).min() == 0:
raise ValueError("The input Y matrix has negative eigen-values.")

super().__init__(modes_out=modes, modes_in=modes, name="GRN")
self._add_parameter(make_parameter(Y_trainable, value=Y, name="Y", bounds=(None, None)))

self._representation = Bargmann.from_function(
fn=triples.gaussian_random_noise_Abc, Y=self.Y.value
)
54 changes: 53 additions & 1 deletion mrmustard/physics/triples.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
import numpy as np

from mrmustard import math, settings
from mrmustard.utils.typing import Matrix, Vector, Scalar
from mrmustard.utils.typing import Matrix, Vector, Scalar, RealMatrix
from mrmustard.physics.gaussian_integrals import complex_gaussian_integral_2


Expand Down Expand Up @@ -605,6 +605,58 @@ def fock_damping_Abc(
return A, b, c


def gaussian_random_noise_Abc(Y: RealMatrix) -> Union[Matrix, Vector, Scalar]:
r"""
The triple (A, b, c) for the gaussian random noise channel.
Args:
Y: the Y matrix of the Gaussian random noise channel.
Returns:
The ``(A, b, c)`` triple of the Gaussian random noise channel.
"""
m = Y.shape[-1] // 2
xi = math.eye(2 * m, dtype=math.complex128) + Y / settings.HBAR
xi_inv = math.inv(xi)
xi_inv_in_blocks = math.block(
[[math.eye(2 * m) - xi_inv, xi_inv], [xi_inv, math.eye(2 * m) - xi_inv]]
)
R = (
1
/ math.sqrt(complex(2))
* math.block(
[
[
math.eye(m, dtype=math.complex128),
1j * math.eye(m, dtype=math.complex128),
math.zeros((m, 2 * m), dtype=math.complex128),
],
[
math.zeros((m, 2 * m), dtype=math.complex128),
math.eye(m, dtype=math.complex128),
-1j * math.eye(m, dtype=math.complex128),
],
[
math.eye(m, dtype=math.complex128),
-1j * math.eye(m, dtype=math.complex128),
math.zeros((m, 2 * m), dtype=math.complex128),
],
[
math.zeros((m, 2 * m), dtype=math.complex128),
math.eye(m, dtype=math.complex128),
1j * math.eye(m, dtype=math.complex128),
],
]
)
)

A = math.Xmat(2 * m) @ R @ xi_inv_in_blocks @ math.conj(R).T
b = math.zeros(4 * m)
c = 1 / math.sqrt(math.det(xi))

return A, b, c


def bargmann_to_quadrature_Abc(n_modes: int, phi: float) -> tuple[Matrix, Vector, Scalar]:
r"""
The ``(A, b, c)`` triple of the multi-mode kernel :math:`\langle \vec{p}|\vec{z} \rangle` between bargmann representation with ABC Ansatz form and quadrature representation with ABC Ansatz.
Expand Down
Loading

0 comments on commit 9bdc0e2

Please sign in to comment.