Skip to content

afids/afids-protocol-original

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AFIDs

An open framework for evaluating correspondence in brain images and teaching neuroanatomy using anatomical fiducial placement

AFIDs

Preprint: https://www.biorxiv.org/content/10.1101/460675v2

Manuscript: http://dx.doi.org/10.1002/hbm.24693

Documentation: https://afids.readthedocs.io/en/latest/

Join our channel on

Introduction

  • The AFID protocol is an anatomical fiducial placement protocol that has been validated and used for teaching at a number of local and BHG-related events including https://github.com/BrainhackWestern/BrainhackWestern.github.io/wiki/Tutorials.
  • AFID placement is reproducible, not overtly manually intensive (20-40 minutes once trained), and more sensitive to local registration errors than standard voxel overlap measures.
  • This protocol and study framework leverages open resources and tools, and has been developed with full transparency in mind so that others may freely use, adopt, and modify.
  • 60+ raters trained to date.

afids

References and Resources

Preprint

  • Lau JC, Parrent AG, Demarco J, Gupta G, Park PJ, Ferko K, Khan AR, Peters TM. A framework for evaluating correspondence between brain images using anatomical fiducials. bioRxiv. 2018. [ref]

Conference Abstracts

  • Lau JC, Parrent AG, Demarco J, Gupta G, Park PJ, Ferko K, Khan AR, Peters TM. AFIDs: an open framework for evaluating correspondence between magnetic resonance images of the human brain using fiducial placement. F1000 Research. Demo presented at INCF NeuroInformatics in Montreal, QC, Canada. 2018. [ref]

Open Datasets

  • Agile12v2016: Lau JC, MacDougall KW, Arango MF, Peters TM, Parrent AG, Khan AR: Ultra-High Field Template-Assisted Target Selection for Deep Brain Stimulation Surgery. World Neurosurg 103:531–537, 2017. [download] [ref]
  • Colin27: Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC: Enhancement of MR Images Using Registration for Signal Averaging. J Comput Assist Tomogr 22:324–333, 1998. [download] [ref]
  • MNI152NLin2009bAsym: Fonov V, Evans AC, Botteron K, Almli RR, McKinstry RC, Collins LL, et al: Unbiased average age-appropriate atlases for pediatric studies. Neuroimage 54:313–327, 2011. [download] [ref]
  • OASIS1: Marcus DS, Fotenos AF, Csernansky JG, Morris JC, Buckner RL: Open Access Series of Imaging Studies: Longitudinal MRI Data in Nondemented and Demented Older Adults. J Cogn Neurosci 22:2677–2684, 2010. [download] [ref]

Software

  • 3D Slicer: Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30:1323–1341, 2012. [download] [ref]

Historical References

  • Talairach1957: Talairach J, David M, Tournoux P, Corredor H, Kvasina T: Atlas d’anatomie Stéréotaxique. Repérage Radiologique Indirect Des Noyaux Gris Centraux Des Régions Mésencephalosousoptique et Hypothalamique de l’homme. Paris, France: Masson & Cie, 1957
  • Talairach1988: Talairach J, Tournoux P: Co-Planar Stereotaxic Atlas of the Human Brain: 3-D Proportional System: An Approach to Cerebral Imaging. ed 1, Thieme, 1988.

Other Resources

Releases

No releases published

Packages

No packages published