MMLRec is the first comprehensive benchmark for multi-task and multi-scenario recommendations. MMLRec implements a wide range of MTL and MSL algorithms, adopting consistent data processing and data-splitting strategies for fair comparisons. We implemented 15 multi-task and multi-scenario methods and evaluated them on five datasets of MTL, five datasets of MSL and two datasets of MTMSL.
Amazon: https://jmcauley.ucsd.edu/data/amazon/
Movielens: https://grouplens.org/datasets/movielens/
Ijcai-2015: https://tianchi.aliyun.com/dataset/42
KuaiRec: https://kuairec.com/
Census-Income: http://archive.ics.uci.edu/dataset/20/census+income
Ijcai-2018: https://tianchi.aliyun.com/dataset/147588
AliExpress: https://tianchi.aliyun.com/dataset/74690
- Python 3.8.13
- Pandas
- tqdm
- sklearn
- numpy
- PyTorch 1.11.0
Run MTL
python main.py --config configs_mtl/config_{dataset_neme}.json
Run MSL
python main.py --config configs_msl/config_{dataset_neme}.json
Run MTMSL
python main.py --config configs_mtmsl/config_{dataset_neme}.json