Skip to content

andrewkof/f-Gamma-Divergence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

License

(ƒ , $\Gamma$)-Divergence

Visualized examples from Dupui's and Mao's and Birrell's papers.

  • Dirac Masses: Example 3.1, in page 13
  • Gaussian: Theorem 6.8, in page 114
  • Unifrom: Example 1, section (4.1) in page 42.

Special cases of (ƒ , $\Gamma$)-divergences

Alt-txt

Mass Redistribution/Transport

Dirac Masses

Here we consider a simple example involving Dirac masses where the (f, Γ)-divergence can be explicitly computed using Theorem 3.3. This example further illustrates the two-stage mass-redistribution/mass-transport interpretation of the infimal convolution formula and demonstrates how the location and distribution of probability mass impacts the result.

Case 1 Case 2
Alt-txt Alt-txt

Gaussian

1) P ~ N(1, 0.5), Q ~ N(3, 0.5) 2) P ~ N(1, 0.5), Q ~ N(3, 1) 3) P ~ N(1, 1), Q ~ N(3, 0.5)
Alt-txt Alt-txt Alt-txt

Uniform

For given c, b solves: exp(1 − b) − (1 − b) = 1 + c
When c = 0, b = 1 solves the equation. When c > 0 is small, 1 − b is also close to 0. Moreover, 1 − b can be written as an analytic function of √c around 0 as 1-b = √2√c - c/3 + O(c^(3/2)).

Run Examples

To reproduce the achieved results run the file of your choice with the corresponding arguments. The output is a gif visualizing the Mass Redistribution and Transport respectivly to the chosen case (Dirac, Gaussian or Uniform).

Dirac Masses (Case 2)

Argument Default Value Info Choices
--h 0.1 [float] Position of $\eta^*(x_2)$ from 0.5 -0.5 < h < 0.5

Note: Dirac case 1 has no arguments.

Gaussian

Argument Default Value Info Choices
--m1 1.0 [float] Mean of distribution P -
--sd1 0.5 [float] Standard deviation of distribution P -
--m2 3.0 [float] Mean of distribution Q -
--sd2 1.0 [float] Standard deviation of distribution Q -

Note: Default values corresponds to Case 2.

Uniform

Argument Default Value Info Choices
--c 0.5 [float] Parameter of distribution P 0 < c < e-2

Note: c value must be positive and less than e-2, thus 1-b ≥ 0.

References

@article{dupuis2022formulation,
  title={Formulation and properties of a divergence used to compare probability measures without absolute continuity},
  author={Dupuis, Paul and Mao, Yixiang},
  journal={ESAIM: Control, Optimisation and Calculus of Variations},
  volume={28},
  pages={10},
  year={2022},
  publisher={EDP Sciences}
}
@article{JMLR:v23:21-0100,
  author  = {Jeremiah Birrell and Paul Dupuis and Markos A. Katsoulakis and Yannis Pantazis and Luc Rey-Bellet},
  title   = {(f,Gamma)-Divergences: Interpolating between f-Divergences and Integral Probability Metrics},
  journal = {Journal of Machine Learning Research},
  year    = {2022},
  volume  = {23},
  number  = {39},
  pages   = {1--70},
  url     = {http://jmlr.org/papers/v23/21-0100.html}
}

License

This project is licensed under the MIT License - see the LICENSE file for details.