Khiva - high-performance time series algorithms - for Ruby
🔥 Runs on GPUs (even on Mac) and CPUs
First, install Khiva. For Homebrew, use:
brew install khiva
Add this line to your application’s Gemfile:
gem "khiva"
Calculate the matrix profile between two time series
a = Khiva::Array.new([11, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11], type: :f32)
b = Khiva::Array.new([9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 9], type: :f32)
m = 3 # subsequence length
profile, index = Khiva::Matrix.stomp(a, b, m)
Find motifs (repeated patterns)
n = 2 # number of motifs to extract
distances, indices, subsequences = Khiva::Matrix.find_best_n_motifs(profile, index, m, n)
Find discords (anomalies)
n = 2 # number of discords to extract
distances, indices, subsequences = Khiva::Matrix.find_best_n_discords(profile, index, m, n)
Detect anomalies in a time series
# generate a random time series with anomalies from position 100-109
series = 1000.times.map { |i| i >= 100 && i <= 109 ? 0.5 : rand }
# calculate the matrix profile with subsequence length 10
a = Khiva::Array.new(series, type: :f32)
m = 10
profile, index = Khiva::Matrix.stomp_self_join(a, m)
# find and print the position of the most anomalous subsequence
_, _, subsequences = Khiva::Matrix.find_best_n_discords(profile, index, m, 1)
pos = subsequences.to_a.first
p pos
Use matplotlib.rb for visualization
require "matplotlib/pyplot"
plt = Matplotlib::Pyplot
# series
plt.figure(0)
plt.title("Series")
plt.plot(series)
# matrix profile
plt.figure(1)
plt.title("Matrix Profile")
plt.plot(profile.to_a)
# most anomalous subsequence and its closest subsequence
plt.figure(2)
plt.title("Subsequences")
plt.plot(series[pos, m], label: "Anomalous")
plt.plot(series[index.to_a[pos], m], label: "Closest")
plt.legend
Find a similar pattern in time series
series = [1, 1, 1, 3, 4, 1, 1, 1, 1]
query = [1, 2, 3]
s = Khiva::Array.new(series, type: :f32)
q = Khiva::Array.new(query, type: :f32)
_, indices = Khiva::Matrix.find_best_n_occurrences(q, s, 1)
pos = indices.to_a.first
similar_subsequence = series[pos, query.size] # [1, 3, 4]
- Array
- Clustering
- Dimensionality
- Distances
- Features
- Library
- Linalg
- Matrix
- Normalization
- Polynomial
- Regression
- Regularization
- Statistics
Create an array from a Ruby array
Khiva::Array.new([1, 2, 3])
Specify the type - :b8
, :f32
, :f64
, :s16
, :s32
, :s64
, :u8
, :u16
, :u32
, :u64
Khiva::Array.new([1, 2, 3], type: :s64)
Get the type and dimensions
a.type
a.dims
Perform operations on arrays
a + b
a - b
a * b
a / b
a % b
a ** b
Compare arrays
a.eq(b)
a.ne(b)
a.lt(b)
a.gt(b)
a.le(b)
a.ge(b)
k-means algorithm
centroids, labels = Khiva::Clustering.k_means(tss, k)
k-Shape algorithm
centroids, labels = Khiva::Clustering.k_shape(tss, k)
Piecewise Aggregate Approximation (PAA)
Khiva::Dimensionality.paa(a, bins)
Perceptually Important Points (PIP)
Khiva::Dimensionality.pip(a, number_ips)
Piecewise Linear Approximation (PLA Bottom Up)
Khiva::Dimensionality.pla_bottom_up(a, max_error)
Piecewise Linear Approximation (PLA Sliding Window)
Khiva::Dimensionality.pla_sliding_window(a, max_error)
Ramer-Douglas-Peucker (RDP)
Khiva::Dimensionality.ramer_douglas_peucker(a, epsilon)
Symbolic Aggregate ApproXimation (SAX)
Khiva::Dimensionality.sax(a, alphabet_size)
Visvalingam
Khiva::Dimensionality.visvalingam(a, num_points)
Dynamic time warping (DTW) distance
Khiva::Distances.dtw(tss)
Euclidean distance
Khiva::Distances.euclidean(tss)
Hamming distance
Khiva::Distances.hamming(tss)
Manhattan distance
Khiva::Distances.manhattan(tss)
Shape-based distance (SBD)
Khiva::Distances.sbd(tss)
Squared Euclidean distance
Khiva::Distances.squared_euclidean(tss)
Sum of square values
Khiva::Features.abs_energy(tss)
Absolute sum of changes
Khiva::Features.absolute_sum_of_changes(tss)
Aggregated autocorrelation
Khiva::Features.aggregated_autocorrelation(tss, aggregation_function)
Approximate entropy
Khiva::Features.approximate_entropy(tss, m, r)
Autocorrelation
Khiva::Features.auto_correlation(tss, max_lag, unbiased)
Auto-covariance
Khiva::Features.auto_covariance(tss, unbiased: false)
Binned entropy
Khiva::Features.binned_entropy(tss, max_bins)
Schreiber, T. and Schmitz, A. (1997) measure of non-linearity
Khiva::Features.c3(tss, lag)
Estimate of complexity defined by Batista, Gustavo EAPA, et al (2014)
Khiva::Features.cid_ce(tss, z_normalize)
Number of values above the mean
Khiva::Features.count_above_mean(tss)
Number of values below the mean
Khiva::Features.count_below_mean(tss)
Cross-correlation
Khiva::Features.cross_correlation(xss, yss, unbiased)
Cross-covariance
Khiva::Features.cross_covariance(xss, yss, unbiased)
Energy ratio by chunks
Khiva::Features.energy_ratio_by_chunks(arr, num_segments, segment_focus)
The spectral centroid (mean), variance, skew, and kurtosis of the absolute fourier transform spectrum
Khiva::Features.fft_aggregated(tss)
First location of the maximum value
Khiva::Features.first_location_of_maximum(tss)
First location of the minimum value
Khiva::Features.first_location_of_minimum(tss)
Maximum is duplicated
Khiva::Features.has_duplicate_max(tss)
Minimum is duplicated
Khiva::Features.has_duplicate_min(tss)
Any elements are duplicated
Khiva::Features.has_duplicates(tss)
Index of the mass quantile
Khiva::Features.index_mass_quantile(tss, q)
Kurtosis
Khiva::Features.kurtosis(tss)
Standard deviation above threshold
Khiva::Features.large_standard_deviation(tss, r)
Last location of the maximum value
Khiva::Features.last_location_of_maximum(tss)
Last location of the minimum value
Khiva::Features.last_location_of_minimum(tss)
Length of the series
Khiva::Features.length(tss)
Local maximals
Khiva::Features.local_maximals(tss)
Length of the longest consecutive subsequence above the mean
Khiva::Features.longest_strike_above_mean(tss)
Length of the longest consecutive subsequence below the mean
Khiva::Features.longest_strike_below_mean(tss)
Maximum
Khiva::Features.maximum(tss)
Mean
Khiva::Features.mean(tss)
Mean absolute change
Khiva::Features.mean_absolute_change(tss)
Mean change
Khiva::Features.mean_change(tss)
Mean of a central approximation of the second derivative
Khiva::Features.mean_second_derivative_central(tss)
Median
Khiva::Features.median(tss)
Minimum
Khiva::Features.minimum(tss)
Number of m-crossings
Khiva::Features.number_crossing_m(tss, m)
Number of peaks of at least support n
Khiva::Features.number_peaks(tss, n)
Partial autocorrelation
Khiva::Features.partial_autocorrelation(tss, lags)
Percentage of unique values present more than once
Khiva::Features.percentage_of_reoccurring_datapoints_to_all_datapoints(tss, sorted)
Percentage of values present more than once
Khiva::Features.percentage_of_reoccurring_values_to_all_values(tss, sorted)
Quantile
Khiva::Features.quantile(tss, q, precision: 100000000)
Count of values within the interval [min, max]
Khiva::Features.range_count(tss, min, max)
Ratio of values more than r
sigma away from the mean
Khiva::Features.ratio_beyond_r_sigma(tss, coeff)
Ratio of unique values
Khiva::Features.ratio_value_number_to_time_series_length(tss)
Sample entropy
Khiva::Features.sample_entropy(tss)
Skewness
Khiva::Features.skewness(tss)
Cross power spectral density at different frequencies
Khiva::Features.spkt_welch_density(tss, coeff)
Standard deviation
Khiva::Features.standard_deviation(tss)
Sum of all data points present more than once
Khiva::Features.sum_of_reoccurring_datapoints(tss, sorted: false)
Sum of all values present more than once
Khiva::Features.sum_of_reoccurring_values(tss, sorted: false)
Sum of values
Khiva::Features.sum_values(tss)
If looks symmetric
Khiva::Features.symmetry_looking(tss, r)
Time reversal asymmetry
Khiva::Features.time_reversal_asymmetry_statistic(tss, lag)
Number of occurrences of a value
Khiva::Features.value_count(tss, v)
Variance
Khiva::Features.variance(tss)
If variance is larger than one
Khiva::Features.variance_larger_than_standard_deviation(tss)
Get backend info
Khiva::Library.backend_info
Get current backend
Khiva::Library.backend
Get available backends
Khiva::Library.backends
Set backend - :default
, :cpu
, :cuda
, :opencl
Khiva::Library.set_backend(:cpu)
Set device
Khiva::Library.set_device(device_id)
Get device id
Khiva::Library.device_id
Get device count
Khiva::Library.device_count
Set device memory in GB
Khiva::Library.set_device_memory_in_gb(1.5)
Get version
Khiva::Library.version
Khiva::Linalg.lls(a, b)
Find discords
distances, indices, subsequences = Khiva::Matrix.find_best_n_discords(profile, index, m, n)
Find motifs
distances, indices, subsequences = Khiva::Matrix.find_best_n_motifs(profile, index, m, n)
Find best occurences
distances, indices = Khiva::Matrix.find_best_n_occurrences(q, t, n)
Mueen’s Algorithm for Similarity Search (MASS)
distances = Khiva::Matrix.mass(q, t)
Calculate the matrix profile between ta
and tb
using a subsequence length of m
with the STOMP algorithm
profile, index = Khiva::Matrix.stomp(ta, tb, m)
Calculate the matrix profile between t
and itself using a subsequence length of m
with the STOMP algorithm
profile, index = Khiva::Matrix.stomp_self_join(t, m)
Calculate the matrix profile between ta
and tb
using a subsequence length of m
profile, index = Khiva::Matrix.matrix_profile(ta, tb, m)
Calculate the matrix profile between t
and itself using a subsequence length of m
profile, index = Khiva::Matrix.matrix_profile_self_join(t, m)
Get chains
Khiva::Matrix.chains(tss, m)
Decimal scaling
Khiva::Normalization.decimal_scaling_norm(tss)
Khiva::Normalization.decimal_scaling_norm!(tss)
Max min
Khiva::Normalization.max_min_norm(tss)
Khiva::Normalization.max_min_norm!(tss)
Mean
Khiva::Normalization.mean_norm(tss)
Khiva::Normalization.mean_norm!(tss)
Znorm
Khiva::Normalization.znorm(tss)
Khiva::Normalization.znorm!(tss)
Least squares polynomial fit
Khiva::Polynomial.polyfit(x, y, deg)
Linear least squares regression
slope, intercept, rvalue, pvalue, stderrest = Khiva::Regression.linear(xss, yss)
Khiva::Regularization.group_by(tss, aggregation_function, columns_key: 1, n_columns_value: 1)
Covariance
Khiva::Statistics.covariance(tss, unbiased: false)
Kurtosis
Khiva::Statistics.kurtosis(tss)
Ljung-Box
Khiva::Statistics.ljung_box(tss, lags)
Moment
Khiva::Statistics.moment(tss, k)
Quantile
Khiva::Statistics.quantile(tss, q, precision: 1e-8)
Quantiles cut
Khiva::Statistics.quantiles_cut(tss, quantiles, precision: 1e-8)
Standard deviation
Khiva::Statistics.sample_stdev(tss)
Skewness
Khiva::Statistics.skewness(tss)
Install ArrayFire:
sudo apt-key adv --fetch-key https://repo.arrayfire.com/GPG-PUB-KEY-ARRAYFIRE-2020.PUB
echo "deb [arch=amd64] https://repo.arrayfire.com/debian all main" | sudo tee /etc/apt/sources.list.d/arrayfire.list
sudo apt-get update
sudo apt-get install arrayfire-unified3 arrayfire-cpu3-openblas arrayfire-opencl3-openblas
And install Khiva:
wget https://github.com/shapelets/khiva/releases/download/v0.5.0/khiva-khiva_0.5.0_amd64.deb
sudo dpkg -i khiva-khiva_0.5.0_amd64.deb
sudo ldconfig
See instructions.
Run:
brew install khiva
See instructions.
This library is modeled after the Khiva-Python API.
View the changelog
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/ankane/khiva-ruby.git
cd khiva-ruby
bundle install
bundle exec rake test