Skip to content

arthurus-rex/EC523-SER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EC523-SER


Getting started with datasets

This shows how to use some of the functions to get audio data into a format to use with pytorch

For downloading data if you have a "kaggle.json" file you can change directory to where that file is and you won't have to enter username and password for kaggle in order to download that dataset

from torch.utils.data import DataLoader
from dataset import download_datasets, SpeechEmotionDataset, get_dataset_info

# Specify the directory you want the datasets to be contained in
dataset_dir = "/home/datasets"

# Download a single dataset
download_datasets(dataset_dir, dname="emodb")

# Download the rest of the datasets available
download_datasets(dataset_dir)

# Acquire info on datasets (those that have functions to get data for)
df = get_dataset_info(dataset_dir)

# Make into a Dataset object that a pytorch optimizer can use
# Can optionally specify a sampling rate for all audio files to be in
trainset = SpeechEmotionDataset(df, fs=16000)

# Check it works
trainset = SpeechEmotionDataset(df, fs=16000)
dataiter = iter(trainset)
data, label = next(dataiter)
print(data)
print(label)

# Put into a dataloader
trainloader = DataLoader(trainset, batch_size=4, shuffle=True, num_workers=1)

Datasets currently being used:

  • EMODB (german)
  • CREMAD (english)
  • RAVDESS (english)
  • SAVEE (english)
  • TESS (english)
  • SHEMO (persian)

Emotions in datasets:

  • neutral
  • happy
  • sadness
  • disgust
  • anger
  • surprise
  • fear
  • anxiety
  • bored
  • calm

About

initial fork

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •