Skip to content

bogidude/scrimmage

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SCRIMMAGE Multi-Agent Simulator

Build Status contributions welcome Docker Pulls

SCRIMMAGE Logo

Welcome to SCRIMMAGE

SCRIMMAGE is a multi-agent simulator for robotics research. It has been used to conduct studies in multi-agent task assignment, differential game theory, novel controllers, and reinforcement learning.

SCRIMMAGE Demonstration Video

SCRIMMAGE Demo Video

Online Documentation

Tutorials

SCRIMMAGE API

Build SCRIMMAGE

Directory Setup

SCRIMMAGE developers and users may use multiple scrimmage-related projects and repositories. Thus, it is recommended to group your scrimmage-related projects under a single directory, but it is not necessary. To create a directory to hold your scrimmage projects and clone this scrimmage repo, run the following commands:

$ mkdir -p ~/scrimmage && cd ~/scrimmage
$ git clone https://github.com/gtri/scrimmage.git

Install Binary Dependencies

A list of the Ubuntu packages required is provided in ./setup/install-binaries.sh in the "DEPS_DPKG" array. Run our automated installer to install the required packages:

$ cd scrimmage
$ sudo ./setup/install-binaries.sh -e 0 -p 3

The first argument -e 0 says to install all dependencies for all features in SCRIMMAGE (you would use -e 1 if you wanted to run SCRIMMAGE as part of an embedded system). The second argument -p 3 says to install python3 dependencies (use -p a for both python2 and 3 or -p 2 for just python2 dependencies).

Install Custom Built Binary Dependencies

Some of SCRIMMAGE's dependencies have to be custom built from source. We provide deb package binaries via the SCRIMMAGE PPA on Launchpad for these custom built packages. First, add the PPA to your apt-get sources:

$ sudo add-apt-repository ppa:kevin-demarco/scrimmage
$ sudo apt-get update

Now, install the SCRIMMAGE custom built binary dependencies:

$ sudo apt-get install scrimmage-dependencies

Run the SCRIMMAGE setup script, which adds the ~/.scrimmage directory to your local system and sets up some environment variables:

$ source /opt/scrimmage/*/setup.sh

Note: If you need to build the dependencies from source or generate binary packages, see Build Dependencies from Source

Build SCRIMMAGE Core

$ mkdir build && cd build
$ source ~/.scrimmage/setup.bash
$ cmake ..
$ make

Environment Setup

Whenever, you want to use scrimmage, you need to source the ~/.scrimmage/setup.bash file or you can place a line in your ~/.bashrc file to source it automatically:

$ echo "source ~/.scrimmage/setup.bash" >> ~/.bashrc

Run SCRIMMAGE

Open a new terminal, change to the scrimmage directory, and execute a mission.

$ cd scrimmage
$ scrimmage ./missions/straight.xml

You should see the visualization GUI open up and display the simulation.

GUI Commands

The GUI responds to the following input keys:

'q'                     : Quit the simulation
'b'                     : (Break) Pauses and unpauses the simulation.
'space bar'             : When paused, take a single simulation step.
'a'                     : Rotate through the camera views
'right/left arrows'     : Change the aircraft to follow
'['                     : Decrease simulation warp speed
']'                     : Increase simulation warp speed
'+'                     : Increase visual scale of all entities
'-'                     : Decrease visual scale of all entities
'r'                     : Reset visual scale and reset camera position
'z'                     : Zoom out from entity
'Z'                     : Zoom in to entity (z+shift)
'w'                     : Display wireframe
's'                     : Display solids (vs. wireframe)
'CTRL + Left Click'     : Rotate world
'SHIFT + Left Click'    : Translate camera through world

The GUI's camera can operate in three modes (cycle with 'a' key):

  1. Follow the entity and point towards the entity's heading
  2. Free floating camera
  3. Follow the entity from a fixed viewpoint

Note: If all of the terrain data does not appear, click on the GUI window with your mouse.

Python Bindings

SCRIMMAGE's Python bindings depend on protobuf, GRPC, and pandas. Install the appropriate versions of grpc and protobuf:

$ sudo pip install protobuf==3.3.0 grpcio==1.2.1

You can specify a minimum Python version in SCRIMMAGE core by setting the PYTHON_MIN_VERSION cmake variable. For example, to specify a minimum Python 3.0 version, first clear the cmake cache file and rerun cmake:

$ rm CMakeCache.txt
$ cmake .. -DPYTHON_MIN_VERSION=3.0

Otherwise, cmake will choose Python on it's own. CMake seems to find the minimum version of Python specified. It should be noted that interactive_plots.py uses wxPython which is only compatible with python2.

Install SCRIMMAGE Python Bindings

To install scrimmage's python bindings:

$ cd /path/to/scrimmage/python
$ sudo pip install -e .

Build SCRIMMAGE Documentation

$ cd build
$ cmake .. -DBUILD_DOCS=ON
$ make docs

View SCRIMMAGE API (Doxygen) Documentation

$ firefox ./docs/doxygen/html/index.html

View SCRIMMAGE Tutorial (Sphinx) Documentation

$ firefox ./docs/sphinx/html/index.html

Build and Run Tests

$ cmake .. -DBUILD_TESTS=ON
$ make
$ make test

Cleaning SCRIMMAGE

The scrimmage source code can be cleaned with the standard clean command:

$ make clean

However, if you want to clean everything, you can remove your build directory:

$ cd /path/to/scrimmage && rm -rf build

ROS Integration

To build SCRIMMAGE's ROS plugins, you must have ROS installed and the BUILD_ROS_PLUGINS cmake variable must be set:

$ cmake .. -DBUILD_ROS_PLUGINS=ON

An example of using SCRIMMAGE to simulate robots running the ROS 2D Navigation stack can be found in the scrimmage_ros package.

MOOS Integration

If you want to use MOOS with SCRIMMAGE, you will first need to download and build MOOS/MOOS-IVP according to the instructions at: http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php?n=Site.Download

The MOOSAutonomy plugin interacts with the MOOSDB to synchronize time, exchange contact information, and receive desired state from the IvP Helm. To build MOOSAutonomy, you have to provide cmake with the path to the moos-ivp source tree:

$ cmake .. -DMOOSIVP_SOURCE_TREE_BASE=/path/to/moos-ivp

FlightGear Multiplayer Server (FGMS) Integration

If you want to use FGMS with SCRIMMAGE, you will first need to download and build FGMS according to the instructions at: https://github.com/FlightGear/fgms

Clone the flight gear multiplayer server repository and build it:

$ git clone https://github.com/FlightGear/fgms.git
$ cd fgms
$ git checkout 6669ac222b9f6ca34b0d56ba1bc6cac9cc0324b2
$ mkdir build && cd build
$ cmake .. -DBUILD_SHARED_LIB=ON
$ make

The FGMS plugin interacts with SCRIMMAGE to receive the state variables of each entity. To build FGMS, you have to provide SCRIMMAGE's CMake project the path to the FGMS root source:

$ cmake .. -DFGMS_SOURCE_TREE_BASE=/path/to/fgms

Running SCRIMMAGE inside of Docker

The SCRIMMAGE docker image is pushed to a public repository after a successful build on Travis. If docker is installed on your machine, you can obtain the SCRIMMAGE docker image by running the following command:

$ docker pull syllogismrxs/scrimmage:latest

You can pass mission files from your host machine to the scrimmage executable inside of the docker container with the following command:

$ cd /path/to/scrimmage/missions
$ docker run --name my-scrimmage \
    -v ${PWD}/straight_jsbsim.xml:/straight_jsbsim.xml \
    syllogismrxs/scrimmage:latest /straight_jsbsim.xml

The previous command mounts the straight_jsbsim.xml mission file on your host machine into the scrimmage container and then the /straight_jsbsim.xml portion at the end of the command overwrites the default docker CMD, which is defined in the Dockerfile. Finally, the scrimmage executable is passed the /straight_jsbsim.xml mission file.

Since we provided a name for our container, we can easily extract the SCRIMMAGE log files from the docker container:

$ docker cp my-scrimmage:/root/.scrimmage/logs .

If you need to drop into a shell inside of the scrimmage container, you will need to overwrite the docker image's ENTRYPOINT.

$ docker run -it --entrypoint="/bin/bash" syllogismrxs/scrimmage:latest

Once inside of the container, you will need to source the setup.bash file manually before running a mission.

$ source ~/.scrimmage/setup.bash
$ scrimmage ./missions/straight-no-gui.xml

Installing and Configuring Open Grid Engine

Instructions modified from: https://scidom.wordpress.com/2012/01/18/sge-on-single-pc/ http://www.bu.edu/tech/support/research/system-usage/running-jobs/tracking-jobs/

Install Grid Engine:

$ sudo apt-get install gridengine-master gridengine-exec \
  gridengine-common gridengine-qmon gridengine-client

Note that you can configure how qsub is called with a .sge_request in your home directory. Further, you can set the number of available slots (cores available) when running grid engine under the Queue Control tab.

Installing and Configuring PostgreSQL

Install PostgreSQL and configure the database scrimmage, create user scrimmage with password scrimmage, and add that user to the scrimmage database:

$ sudo apt-get install postgresql postgresql-contrib
$ sudo update-rc.d postgresql enable &&\
  sudo service postgresql restart &&\
  sudo -u postgres createdb scrimmage &&\
  sudo -u postgres psql -c "CREATE USER scrimmage with password 'scrimmage';" &&\
  sudo -u postgres psql -c "alter user scrimmage with encrypted password 'scrimmage'" &&\
  sudo -u postgres psql -c "grant all privileges on database scrimmage to scrimmage;"

Go into /etc/postgresql/9.5/main/pg_hba.conf (or similar path to your postgres install) and change the line:

local all all peer

to

local all all md5

Then run:

$ sudo service postgresql restart

This will allow us to authenticate the scrimmage user on postgres with the password scrimmage that we created.

To use the python scripts for pulling .csv files to postgres, install psycopg2, the python interface for postgres:

$ pip install psycopg2

The scripts are located in the scripts directory.

Troubleshooting

Problem: I can't run the SCRIMMAGE GUI in a Virtual Machine (VirtualBox)

There are some OpenGL issues with VTK6 in Virtualbox. To run SCRIMMAGE in VirtualBox with VTK5, run the following commands:

$ sudo apt-get install libvtk5-dev
$ cd ~/scrimmage/scrimmage/build      # Note: Path may vary
$ cmake ..

At this point, cmake should output a message about finding VTK Version 5. Now, you have to rebuild SCRIMMAGE:

$ make

Problem: I cannot load python libraries through scrimmage

Make sure that when you run the cmake command it is using the version of python that you want to use with the following:

$ cmake -DPYTHON_EXECUTABLE:FILEPATH=/usr/bin/python      \  # adjust path to your needs
        -DPYTHON_INCLUDE_DIR:PATH=/usr/include/python2.7  \  # adjust path to your needs
        -DPYTHON_LIBRARY:FILEPATH=/usr/lib/libpython2.7.so   # adjust path to your needs

Problem: vtkRenderingPythonTkWidgets cmake Warning

When running cmake, the user gets the cmake warning:

-- The imported target "vtkRenderingPythonTkWidgets" references the file
"/usr/lib/x86_64-linux-gnu/libvtkRenderingPythonTkWidgets.so"
but this file does not exist.  Possible reasons include:
* The file was deleted, renamed, or moved to another location.
* An install or uninstall procedure did not complete successfully.
* The installation package was faulty and contained
"/usr/lib/cmake/vtk-6.2/VTKTargets.cmake"
but not all the files it references.

This is a VTK6 Ubuntu package bug. It can be ignored.

Problem: Docker Container Can't Access Internet

Docker can have DNS issues. If you can ping a public ip address within a docker image (such as 8.8.8.8), but you can't ping archive.ubuntu.com, create the file /etc/docker/daemon.json with the following contents:

{
    "dns": ["<DNS-IP>", "8.8.8.8"]
}

Where is the first DNS IP address and is a network interface with internet access from the commands:

$ nmcli dev list | grep 'IP4.DNS'                    # Ubuntu <= 14
$ nmcli device show <interfacename> | grep IP4.DNS   # Ubuntu >= 15

Restart docker:

$ sudo service docker restart

About

Multi-Agent Robotics Simulator

Resources

License

Unknown and 2 other licenses found

Licenses found

Unknown
LICENSE
GPL-3.0
COPYING
LGPL-3.0
COPYING.LESSER

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 81.9%
  • CMake 10.7%
  • Python 5.7%
  • Shell 1.7%