Skip to content

Commit

Permalink
Much more comprehensive tests
Browse files Browse the repository at this point in the history
  • Loading branch information
dellaert committed Sep 30, 2024
1 parent 12349b9 commit 44fb786
Showing 1 changed file with 102 additions and 16 deletions.
118 changes: 102 additions & 16 deletions gtsam/hybrid/tests/testHybridBayesNet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -62,32 +62,117 @@ TEST(HybridBayesNet, Add) {
}

/* ****************************************************************************/
// Test evaluate for a pure discrete Bayes net P(Asia).
// Test API for a pure discrete Bayes net P(Asia).
TEST(HybridBayesNet, EvaluatePureDiscrete) {
HybridBayesNet bayesNet;
bayesNet.emplace_shared<DiscreteConditional>(Asia, "4/6");
HybridValues values;
values.insert(asiaKey, 0);
EXPECT_DOUBLES_EQUAL(0.4, bayesNet.evaluate(values), 1e-9);
const auto pAsia = std::make_shared<DiscreteConditional>(Asia, "4/6");
bayesNet.push_back(pAsia);
HybridValues zero{{}, {{asiaKey, 0}}}, one{{}, {{asiaKey, 1}}};

// choose
GaussianBayesNet empty;
EXPECT(assert_equal(empty, bayesNet.choose(zero.discrete()), 1e-9));

// evaluate
EXPECT_DOUBLES_EQUAL(0.4, bayesNet.evaluate(zero), 1e-9);
EXPECT_DOUBLES_EQUAL(0.4, bayesNet(zero), 1e-9);

// optimize
EXPECT(assert_equal(one, bayesNet.optimize()));
EXPECT(assert_equal(VectorValues{}, bayesNet.optimize(one.discrete())));

// sample
std::mt19937_64 rng(42);
EXPECT(assert_equal(zero, bayesNet.sample(&rng)));
EXPECT(assert_equal(one, bayesNet.sample(one, &rng)));
EXPECT(assert_equal(zero, bayesNet.sample(zero, &rng)));

// error
EXPECT_DOUBLES_EQUAL(-log(0.4), bayesNet.error(zero), 1e-9);
EXPECT_DOUBLES_EQUAL(-log(0.6), bayesNet.error(one), 1e-9);

// logProbability
EXPECT_DOUBLES_EQUAL(log(0.4), bayesNet.logProbability(zero), 1e-9);
EXPECT_DOUBLES_EQUAL(log(0.6), bayesNet.logProbability(one), 1e-9);

// toFactorGraph
HybridGaussianFactorGraph expectedFG{pAsia}, fg = bayesNet.toFactorGraph({});
EXPECT(assert_equal(expectedFG, fg));

// prune, imperative :-(
EXPECT(assert_equal(bayesNet, bayesNet.prune(2)));
EXPECT_LONGS_EQUAL(1, bayesNet.prune(1).at(0)->size());
}

/* ****************************************************************************/
// Test creation of a tiny hybrid Bayes net.
TEST(HybridBayesNet, Tiny) {
auto bn = tiny::createHybridBayesNet();
EXPECT_LONGS_EQUAL(3, bn.size());
auto bayesNet = tiny::createHybridBayesNet(); // P(z|x,mode)P(x)P(mode)
EXPECT_LONGS_EQUAL(3, bayesNet.size());

const VectorValues vv{{Z(0), Vector1(5.0)}, {X(0), Vector1(5.0)}};
auto fg = bn.toFactorGraph(vv);
HybridValues zero{vv, {{M(0), 0}}}, one{vv, {{M(0), 1}}};

// Check Invariants for components
HybridGaussianConditional::shared_ptr hgc = bayesNet.at(0)->asHybrid();
GaussianConditional::shared_ptr gc0 = hgc->choose(zero.discrete()),
gc1 = hgc->choose(one.discrete());
GaussianConditional::shared_ptr px = bayesNet.at(1)->asGaussian();
GaussianConditional::CheckInvariants(*gc0, vv);
GaussianConditional::CheckInvariants(*gc1, vv);
GaussianConditional::CheckInvariants(*px, vv);
HybridGaussianConditional::CheckInvariants(*hgc, zero);
HybridGaussianConditional::CheckInvariants(*hgc, one);

// choose
GaussianBayesNet expectedChosen;
expectedChosen.push_back(gc0);
expectedChosen.push_back(px);
auto chosen0 = bayesNet.choose(zero.discrete());
auto chosen1 = bayesNet.choose(one.discrete());
EXPECT(assert_equal(expectedChosen, chosen0, 1e-9));

// logProbability
const double logP0 = chosen0.logProbability(vv) + log(0.4); // 0.4 is prior
const double logP1 = chosen1.logProbability(vv) + log(0.6); // 0.6 is prior
EXPECT_DOUBLES_EQUAL(logP0, bayesNet.logProbability(zero), 1e-9);
EXPECT_DOUBLES_EQUAL(logP1, bayesNet.logProbability(one), 1e-9);

// evaluate
EXPECT_DOUBLES_EQUAL(exp(logP0), bayesNet.evaluate(zero), 1e-9);

// optimize
EXPECT(assert_equal(one, bayesNet.optimize()));
EXPECT(assert_equal(chosen0.optimize(), bayesNet.optimize(zero.discrete())));

// sample
std::mt19937_64 rng(42);
EXPECT(assert_equal({{M(0), 1}}, bayesNet.sample(&rng).discrete()));

// error
const double error0 = chosen0.error(vv) + gc0->negLogConstant() -
px->negLogConstant() - log(0.4);
const double error1 = chosen1.error(vv) + gc1->negLogConstant() -
px->negLogConstant() - log(0.6);
EXPECT_DOUBLES_EQUAL(error0, bayesNet.error(zero), 1e-9);
EXPECT_DOUBLES_EQUAL(error1, bayesNet.error(one), 1e-9);
EXPECT_DOUBLES_EQUAL(error0 + logP0, error1 + logP1, 1e-9);

// toFactorGraph
auto fg = bayesNet.toFactorGraph({{Z(0), Vector1(5.0)}});
EXPECT_LONGS_EQUAL(3, fg.size());

// Check that the ratio of probPrime to evaluate is the same for all modes.
std::vector<double> ratio(2);
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
ratio[mode] = std::exp(-fg.error(hv)) / bn.evaluate(hv);
}
ratio[0] = std::exp(-fg.error(zero)) / bayesNet.evaluate(zero);
ratio[1] = std::exp(-fg.error(one)) / bayesNet.evaluate(one);
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);

// prune, imperative :-(
auto pruned = bayesNet.prune(1);
EXPECT_LONGS_EQUAL(1, pruned.at(0)->asHybrid()->nrComponents());
EXPECT(!pruned.equals(bayesNet));

}

/* ****************************************************************************/
Expand Down Expand Up @@ -223,12 +308,15 @@ TEST(HybridBayesNet, Optimize) {
/* ****************************************************************************/
// Test Bayes net error
TEST(HybridBayesNet, Pruning) {
// Create switching network with three continuous variables and two discrete:
// ϕ(x0) ϕ(x0,x1,m0) ϕ(x1,x2,m1) ϕ(x0;z0) ϕ(x1;z1) ϕ(x2;z2) ϕ(m0) ϕ(m0,m1)
Switching s(3);

HybridBayesNet::shared_ptr posterior =
s.linearizedFactorGraph.eliminateSequential();
EXPECT_LONGS_EQUAL(5, posterior->size());

// Optimize
HybridValues delta = posterior->optimize();
auto actualTree = posterior->evaluate(delta.continuous());

Expand All @@ -254,7 +342,6 @@ TEST(HybridBayesNet, Pruning) {
logProbability += posterior->at(0)->asHybrid()->logProbability(hybridValues);
logProbability += posterior->at(1)->asHybrid()->logProbability(hybridValues);
logProbability += posterior->at(2)->asHybrid()->logProbability(hybridValues);
// NOTE(dellaert): the discrete errors were not added in logProbability tree!
logProbability +=
posterior->at(3)->asDiscrete()->logProbability(hybridValues);
logProbability +=
Expand Down Expand Up @@ -316,10 +403,9 @@ TEST(HybridBayesNet, UpdateDiscreteConditionals) {
#endif

// regression
DiscreteKeys dkeys{{M(0), 2}, {M(1), 2}, {M(2), 2}};
DecisionTreeFactor::ADT potentials(
dkeys, std::vector<double>{0, 0, 0, 0.505145423, 0, 1, 0, 0.494854577});
DiscreteConditional expected_discrete_conditionals(1, dkeys, potentials);
s.modes, std::vector<double>{0, 0, 0, 0.505145423, 0, 1, 0, 0.494854577});
DiscreteConditional expected_discrete_conditionals(1, s.modes, potentials);

// Prune!
posterior->prune(maxNrLeaves);
Expand Down

0 comments on commit 44fb786

Please sign in to comment.