Django integration with RQ, a Redis
based Python queuing library. Django-RQ is a
simple app that allows you to configure your queues in django's settings.py
and easily use them in your project.
If you find django-rq
useful, please consider supporting its development via Tidelift.
- Install
django-rq
(or download from PyPI):
pip install django-rq
- Add
django_rq
toINSTALLED_APPS
insettings.py
:
INSTALLED_APPS = (
# other apps
"django_rq",
)
- Configure your queues in django's
settings.py
:
RQ_QUEUES = {
'default': {
'HOST': 'localhost',
'PORT': 6379,
'DB': 0,
'PASSWORD': 'some-password',
'DEFAULT_TIMEOUT': 360,
},
'with-sentinel': {
'SENTINELS': [('localhost', 26736), ('localhost', 26737)],
'MASTER_NAME': 'redismaster',
'DB': 0,
'PASSWORD': 'secret',
'SOCKET_TIMEOUT': None,
'CONNECTION_KWARGS': {
'socket_connect_timeout': 0.3
},
},
'high': {
'URL': os.getenv('REDISTOGO_URL', 'redis://localhost:6379/0'), # If you're on Heroku
'DEFAULT_TIMEOUT': 500,
},
'low': {
'HOST': 'localhost',
'PORT': 6379,
'DB': 0,
}
}
RQ_EXCEPTION_HANDLERS = ['path.to.my.handler'] # If you need custom exception handlers
- Include
django_rq.urls
in yoururls.py
:
# For Django < 2.0
urlpatterns += [
url(r'^django-rq/', include('django_rq.urls')),
]
# For Django >= 2.0
urlpatterns += [
path('django-rq/', include('django_rq.urls'))
]
Django-RQ allows you to easily put jobs into any of the queues defined in
settings.py
. It comes with a few utility functions:
enqueue
- push a job to thedefault
queue:
import django_rq
django_rq.enqueue(func, foo, bar=baz)
get_queue
- returns anQueue
instance.
import django_rq
queue = django_rq.get_queue('high')
queue.enqueue(func, foo, bar=baz)
In addition to name
argument, get_queue
also accepts default_timeout
,
is_async
, autocommit
, connection
and queue_class
arguments. For example:
queue = django_rq.get_queue('default', autocommit=True, is_async=True, default_timeout=360)
queue.enqueue(func, foo, bar=baz)
You can provide your own singleton Redis connection object to this function so that it will not create a new connection object for each queue definition. This will help you limit number of connections to Redis server. For example:
import django_rq
import redis
redis_cursor = redis.StrictRedis(host='', port='', db='', password='')
high_queue = django_rq.get_queue('high', connection=redis_cursor)
low_queue = django_rq.get_queue('low', connection=redis_cursor)
get_connection
- accepts a single queue name argument (defaults to "default") and returns a connection to the queue's Redis server:
import django_rq
redis_conn = django_rq.get_connection('high')
get_worker
- accepts optional queue names and returns a new RQWorker
instance for specified queues (ordefault
queue):
import django_rq
worker = django_rq.get_worker() # Returns a worker for "default" queue
worker.work()
worker = django_rq.get_worker('low', 'high') # Returns a worker for "low" and "high"
To easily turn a callable into an RQ task, you can also use the @job
decorator that comes with django_rq
:
from django_rq import job
@job
def long_running_func():
pass
long_running_func.delay() # Enqueue function in "default" queue
@job('high')
def long_running_func():
pass
long_running_func.delay() # Enqueue function in "high" queue
You can pass in any arguments that RQ's job decorator accepts:
@job('default', timeout=3600)
def long_running_func():
pass
long_running_func.delay() # Enqueue function with a timeout of 3600 seconds.
It's possible to specify default for result_ttl
decorator keyword argument
via DEFAULT_RESULT_TTL
setting:
RQ = {
'DEFAULT_RESULT_TTL': 5000,
}
With this setting, job decorator will set result_ttl
to 5000 unless it's
specified explicitly.
django_rq provides a management command that starts a worker for every queue specified as arguments:
python manage.py rqworker high default low
If you want to run rqworker
in burst mode, you can pass in the --burst
flag:
python manage.py rqworker high default low --burst
If you need to use custom worker, job or queue classes, it is best to use global settings (see Custom queue classes and Custom job and worker classes). However, it is also possible to override such settings with command line options as follows.
To use a custom worker class, you can pass in the --worker-class
flag
with the path to your worker:
python manage.py rqworker high default low --worker-class 'path.to.GeventWorker'
To use a custom queue class, you can pass in the --queue-class
flag
with the path to your queue class:
python manage.py rqworker high default low --queue-class 'path.to.CustomQueue'
To use a custom job class, provide --job-class
flag.
With RQ 1.2.0. you can use built-in scheduler for your jobs. For example:
from django_rq.queues import get_queue
queue = get_queue('default')
job = queue.enqueue_at(datetime(2020, 10, 10), func)
If you using built-in scheduler you have to start workers with scheduler support:
python manage.py rqworker --with-scheduler
Alternatively you can use RQ Scheduler.
After install you can also use the get_scheduler
function to return a
Scheduler
instance for queues defined in settings.py's RQ_QUEUES
.
For example:
import django_rq
scheduler = django_rq.get_scheduler('default')
job = scheduler.enqueue_at(datetime(2020, 10, 10), func)
You can also use the management command rqscheduler
to start the scheduler:
python manage.py rqscheduler
If you have django-redis or django-redis-cache installed, you can instruct django_rq to use the same connection information from your Redis cache. This has two advantages: it's DRY and it takes advantage of any optimization that may be going on in your cache setup (like using connection pooling or Hiredis.)
To use configure it, use a dict with the key USE_REDIS_CACHE
pointing to the
name of the desired cache in your RQ_QUEUES
dict. It goes without saying
that the chosen cache must exist and use the Redis backend. See your respective
Redis cache package docs for configuration instructions. It's also important to
point out that since the django-redis-cache ShardedClient
splits the cache
over multiple Redis connections, it does not work.
Here is an example settings fragment for django-redis:
CACHES = {
'redis-cache': {
'BACKEND': 'redis_cache.cache.RedisCache',
'LOCATION': 'localhost:6379:1',
'OPTIONS': {
'CLIENT_CLASS': 'django_redis.client.DefaultClient',
'MAX_ENTRIES': 5000,
},
},
}
RQ_QUEUES = {
'high': {
'USE_REDIS_CACHE': 'redis-cache',
},
'low': {
'USE_REDIS_CACHE': 'redis-cache',
},
}
django_rq
also provides a dashboard to monitor the status of your queues at
/django-rq/
(or whatever URL you set in your urls.py
during installation.
You can also add a link to this dashboard link in /admin
by adding
RQ_SHOW_ADMIN_LINK = True
in settings.py
. Be careful though, this will
override the default admin template so it may interfere with other apps that
modifies the default admin template.
These statistics are also available in JSON format via
/django-rq/stats.json
, which is accessible to staff members.
If you need to access this view via other
HTTP clients (for monitoring purposes), you can define RQ_API_TOKEN
and access it via
/django-rq/stats.json/<API_TOKEN>
.
Note: Statistics of scheduled jobs display jobs from RQ built-in scheduler, not optional RQ scheduler.
Additionally, these statistics are also accessible from the command line.
python manage.py rqstats
python manage.py rqstats --interval=1 # Refreshes every second
python manage.py rqstats --json # Output as JSON
python manage.py rqstats --yaml # Output as YAML
Django-RQ >= 2.0 uses sentry-sdk
instead of the deprecated raven
library. Sentry
should be configured within the Django settings.py
as described in the Sentry docs.
You can override the default Django Sentry configuration when running the rqworker
command
by passing the sentry-dsn
option:
./manage.py rqworker --sentry-dsn=https://*****@sentry.io/222222
This will override any existing Django configuration and reinitialise Sentry, setting the following Sentry options:
{
'debug': options.get('sentry_debug'),
'ca_certs': options.get('sentry_ca_certs'),
'integrations': [RedisIntegration(), RqIntegration(), DjangoIntegration()]
}
Starting from version 0.3.3, RQ uses Python's logging
, this means
you can easily configure rqworker
's logging mechanism in django's
settings.py
. For example:
LOGGING = {
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"rq_console": {
"format": "%(asctime)s %(message)s",
"datefmt": "%H:%M:%S",
},
},
"handlers": {
"rq_console": {
"level": "DEBUG",
"class": "rq.utils.ColorizingStreamHandler",
"formatter": "rq_console",
"exclude": ["%(asctime)s"],
},
# If you use sentry for logging
'sentry': {
'level': 'ERROR',
'class': 'raven.contrib.django.handlers.SentryHandler',
},
},
'loggers': {
"rq.worker": {
"handlers": ["rq_console", "sentry"],
"level": "DEBUG"
},
}
}
Note: error logging to Sentry is known to be unreliable with RQ when using async
transports (the default transport). Please configure Raven
to use
sync+https://
or requests+https://
transport in settings.py
:
RAVEN_CONFIG = {
'dsn': 'sync+https://public:secret@example.com/1',
}
For more info, refer to Raven's documentation.
By default, every queue will use DjangoRQ
class. If you want to use a custom queue class, you can do so
by adding a QUEUE_CLASS
option on a per queue basis in RQ_QUEUES
:
RQ_QUEUES = {
'default': {
'HOST': 'localhost',
'PORT': 6379,
'DB': 0,
'QUEUE_CLASS': 'module.path.CustomClass',
}
}
or you can specify DjangoRQ
to use a custom class for all your queues in RQ
settings:
RQ = {
'QUEUE_CLASS': 'module.path.CustomClass',
}
Custom queue classes should inherit from django_rq.queues.DjangoRQ
.
If you are using more than one queue class (not recommended), be sure to only run workers
on queues with same queue class. For example if you have two queues defined in RQ_QUEUES
and
one has custom class specified, you would have to run at least two separate workers for each
queue.
Similarly to custom queue classes, global custom job and worker classes can be configured using
JOB_CLASS
and WORKER_CLASS
settings:
RQ = {
'JOB_CLASS': 'module.path.CustomJobClass',
'WORKER_CLASS': 'module.path.CustomWorkerClass',
}
Custom job class should inherit from rq.job.Job
. It will be used for all jobs
if configured.
Custom worker class should inherit from rq.worker.Worker
. It will be used for running
all workers unless overriden by rqworker
management command worker-class
option.
For an easier testing process, you can run a worker synchronously this way:
from django.test import TestCase
from django_rq import get_worker
class MyTest(TestCase):
def test_something_that_creates_jobs(self):
... # Stuff that init jobs.
get_worker().work(burst=True) # Processes all jobs then stop.
... # Asserts that the job stuff is done.
You can set the option ASYNC
to False
to make synchronous operation the
default for a given queue. This will cause jobs to execute immediately and on
the same thread as they are dispatched, which is useful for testing and
debugging. For example, you might add the following after you queue
configuration in your settings file:
# ... Logic to set DEBUG and TESTING settings to True or False ...
# ... Regular RQ_QUEUES setup code ...
if DEBUG or TESTING:
for queueConfig in RQ_QUEUES.values():
queueConfig['ASYNC'] = False
Note that setting the is_async
parameter explicitly when calling get_queue
will override this setting.
To run django_rq
's test suite:
`which django-admin.py` test django_rq --settings=django_rq.tests.settings --pythonpath=.
Create an rqworker service that runs the high, default, and low queues.
sudo vi /etc/systemd/system/rqworker.service
[Unit]
Description=Django-RQ Worker
After=network.target
[Service]
WorkingDirectory=<<path_to_your_project_folder>>
ExecStart=/home/ubuntu/.virtualenv/<<your_virtualenv>>/bin/python \
<<path_to_your_project_folder>>/manage.py \
rqworker high default low
[Install]
WantedBy=multi-user.target
Enable and start the service
sudo systemctl enable rqworker
sudo systemctl start rqworker
Add django-rq to your requirements.txt file with:
pip freeze > requirements.txt
Update your Procfile to:
web: gunicorn --pythonpath="$PWD/your_app_name" config.wsgi:application
worker: python your_app_name/manage.py rqworker high default low
Commit and re-deploy. Then add your new worker with:
heroku scale worker=1
See CHANGELOG.md.