Provide high-performance model inference, mainly supporting the CodeFuse model from Ant Group.
Compared to the original FT, this repo has these features:
- ✅ Int8 quantization of CodeFuse model
- ✅ Prompt does not require a complete word at the end
- ✅ Python API
- ✅ Streaming Output with Python API
- ✅ Higher model load speed
- ✅ Some bugfix
Batch size: 1
Model | CodeFuse 13B | |||||
Measurements | Latency (ms) | |||||
GPU | Single A100 | 2 * A100 Tensor Parallelism | ||||
Data Type | fp16 | int8 | fp16 | int8 | ||
Input/Output Length | 16 | 8 | 160 | 195 | 238 | 84 |
64 | 32 | 608 | 369 | 373 | 295 | |
256 | 128 | 2650 | 1530 | 1492 | 1130 | |
1024 | 512 | 10776 | 7054 | 6786 | 5415 | |
Tokens Per Sec | 48 | 75 | 77 | 98 |
We run in the container environment: nvcr.io/nvidia/pytorch:22.09-py3
。
pip install --no-cache-dir pybind11==2.6.2 transformers accelerate sentencepiece
echo "export pybind11_DIR=/opt/conda/lib/python3.8/site-packages/pybind11/share/cmake/pybind11/" >> ~/.bashrc
export pybind11_DIR=/opt/conda/lib/python3.8/site-packages/pybind11/share/cmake/pybind11/
mkdir build ; cd build
export TORCH_PYTHON_LIBRARIES=/opt/conda/lib/python3.8/site-packages/torch/lib/libtorch_python.so
cmake -DCMAKE_BUILD_TYPE=Release -DSM="80;75" -DBUILD_PYT=ON -DSPARSITY_SUPPORT=OFF -DMEASURE_BUILD_TIME=ON \
-DBUILD_CUTLASS_MIXED_GEMM=ON -DBUILD_MULTI_GPU=ON -DBUILD_TRT=OFF \
-DENABLE_FP8=OFF -DBUILD_PYBIND=ON -DTORCH_PYTHON_LIBRARIES=${TORCH_PYTHON_LIBRARIES} ..
make -j"$(grep -c ^processor /proc/cpuinfo)"
You can use examples/pytorch/codefuse/huggingface_convert.py
script to convert checkpoint files from HuggingFace to FasterTransformer.
export MODEL_NAME=codefuse
export TENSOR_PARA_SIZE=2
python ../examples/pytorch/codefuse/huggingface_convert.py \
-o ../models/${MODEL_NAME}/fastertransformer \
-i ../models/${MODEL_NAME}/transformers \
-infer_gpu_num ${TENSOR_PARA_SIZE} \
-processes 20 \
-weight_data_type fp16 \
-model_name gptneox
You can use examples/pytorch/codefuse/quant_and_save.py
script to convert fp16 or fp32 FasterTransformer checkpoint files to int8 files and scales, getting higher model load speed and smaller checkpoint files.
export MODEL_NAME=codefuse
export TENSOR_PARA_SIZE=2
python ../examples/pytorch/codefuse/quant_and_save.py \
--in_dir ../models/${MODEL_NAME}/fastertransformer/${TENSOR_PARA_SIZE}-gpu \
--out_dir ../models/${MODEL_NAME}/fastertransformer/${TENSOR_PARA_SIZE}-gpu_int8 \
--lib_path ../build/lib/libth_common.so \
--tensor_para_size ${TENSOR_PARA_SIZE} \
--use_gptj_residual \
--data_type fp16
You can use examples/pytorch/codefuse/codefuse_example.py
to run model inference.
export MODEL_NAME=codefuse
# fp16 1gpu
python ../examples/pytorch/codefuse/codefuse_example.py \
--ckpt_path ../models/${MODEL_NAME}/fastertransformer/1-gpu \
--tokenizer_path ../models/${MODEL_NAME}/transformers
# int8 1gpu
python ../examples/pytorch/codefuse/codefuse_example.py \
--ckpt_path ../models/${MODEL_NAME}/fastertransformer/1-gpu_int8 \
--tokenizer_path ../models/${MODEL_NAME}/transformers \
--int8_mode 1 \
--enable_int8_weights 1
# fp16 2gpus
torchrun --nproc_per_node 2 ../examples/pytorch/codefuse/codefuse_example.py \
--world_size 2 \
--ckpt_path ../models/${MODEL_NAME}/fastertransformer/2-gpu \
--tokenizer_path ../models/${MODEL_NAME}/transformers
# int8 2gpus
torchrun --nproc_per_node 2 ../examples/pytorch/codefuse/codefuse_example.py \
--world_size 2 \
--ckpt_path ../models/${MODEL_NAME}/fastertransformer/2-gpu_int8 \
--tokenizer_path ../models/${MODEL_NAME}/transformers \
--int8_mode 1 \
--enable_int8_weights 1