Labelme Annotations tools
- Data_folder
- train
- img1.jpg
- img1.json
- img2.jpg
- img2.json
...
- val
- img3.jpg
- img2.json
- img4.jpg
- img4.json
...
# Configuration
# Adjust according to your Dataset and GPU
IMAGES_PER_GPU = 2 # 1
# Number of classes (including background)
NUM_CLASSES = 1 + 1 # Background
# typically after labeled, class can be set from Dataset class
# if you want to test your model, better set it corectly based on your trainning dataset
# Number of training steps per epoch
STEPS_PER_EPOCH = 100
The easiest way to get started is to simply try out on Colab:
python customTrain.py train --dataset=path_to_Data_folder --weights=coco
python customTrain.py train --dataset=path_to_Data_folder --weights=last
- Python3.6
- Tensorflow-gpu==1.15
- keras==2.0.8
For more details check Mask RCNN Repo