Skip to content

Commit

Permalink
Merge pull request #2 from nimarasekh/master
Browse files Browse the repository at this point in the history
Completed 2 more sorries and fixed some bracketing
  • Loading branch information
dagurtomas authored Jun 14, 2024
2 parents 6334c22 + 0909b46 commit 16ee575
Showing 1 changed file with 32 additions and 7 deletions.
39 changes: 32 additions & 7 deletions LeanCondensed/Projects/AB.lean
Original file line number Diff line number Diff line change
Expand Up @@ -50,14 +50,27 @@ lemma hasExactLimitsOfShape_iff_lim_rightExact [HasLimitsOfShape I A] :
HasExactLimitsOfShape I A ↔ Nonempty (PreservesFiniteColimits (lim : (I ⥤ A) ⥤ A)) :=
fun _ ↦ ⟨inferInstance⟩, fun ⟨_⟩ ↦ inferInstance⟩

lemma hasExactLimitsOfShape_iff_limitCone_shortExact [HasLimitsOfShape I A] :
lemma hasExactLimitsOfShape_iff_limitCone_shortExact [B: HasLimitsOfShape I A] :
HasExactLimitsOfShape I A ↔
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (limitCone F).pt.ShortExact) :=
sorry
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (limitCone F).pt.ShortExact) := by
constructor
· intro h F hh
obtain ⟨h1,h2⟩ := h
have eq := IsLimit.conePointUniqueUpToIso (limit.isLimit F) (isLimitLimitCone F)
apply shortExact_of_iso eq
exact (h2 F) hh
· intro h
constructor
·intro F hh
have eq := IsLimit.conePointUniqueUpToIso (isLimitLimitCone F) (limit.isLimit F)
apply shortExact_of_iso eq
exact (h F hh)
· exact B


class HasExactColimitsOfShape : Prop where
hasColimitsOfShape : HasColimitsOfShape I A := by infer_instance
exact_colimit (F : I ⥤ ShortComplex A) : (∀ i, (F.obj i).ShortExact) → (colimit F).ShortExact
exact_colimit (F : I ⥤ ShortComplex A) : ((∀ i, (F.obj i).ShortExact) → (colimit F).ShortExact)

attribute [instance] HasExactColimitsOfShape.hasColimitsOfShape

Expand All @@ -71,10 +84,22 @@ lemma hasExactColimitsOfShape_iff_colim_leftExact [HasLimitsOfShape I A] :
HasExactLimitsOfShape I A ↔ Nonempty (PreservesFiniteColimits (lim : (I ⥤ A) ⥤ A)) :=
fun _ ↦ ⟨inferInstance⟩, fun ⟨_⟩ ↦ inferInstance⟩

lemma hasExactColimitsOfShape_iff_colimitCocone_shortExact [HasColimitsOfShape I A] :
lemma hasExactColimitsOfShape_iff_colimitCocone_shortExact [B: HasColimitsOfShape I A] :
HasExactColimitsOfShape I A ↔
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (colimitCocone F).pt.ShortExact) :=
sorry
∀ (F : I ⥤ ShortComplex A), ((∀ i, (F.obj i).ShortExact) → (colimitCocone F).pt.ShortExact) := by
constructor
· intro h F hh
obtain ⟨h1, h2⟩ := h
have eq := IsColimit.coconePointUniqueUpToIso (colimit.isColimit F) (isColimitColimitCocone F)
apply shortExact_of_iso eq
exact (h2 F) hh
· intro h
constructor
· intro F hh
have eq := IsColimit.coconePointUniqueUpToIso (isColimitColimitCocone F) (colimit.isColimit F)
apply shortExact_of_iso eq
exact (h F hh)
· exact B

end

Expand Down

0 comments on commit 16ee575

Please sign in to comment.