Skip to content

Commit

Permalink
epi_limit_of_epi done
Browse files Browse the repository at this point in the history
  • Loading branch information
dagurtomas committed Jun 15, 2024
1 parent 2f8cba3 commit bf18792
Show file tree
Hide file tree
Showing 2 changed files with 29 additions and 18 deletions.
44 changes: 26 additions & 18 deletions LeanCondensed/LightCondensed/SequentialLimit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -84,25 +84,33 @@ lemma epi_limit_of_epi : Epi (c.π.app ⟨0⟩) := by
simp only [preimage_diagram, Nat.succ_eq_add_one, Nat.functor_mk_obj, Nat.functor_mk_map_step]
exact preimage_transitionMap_surj _ _ _ _ _ _
refine ⟨limit (preimage_diagram R c hF S g), limit.π (preimage_diagram R c hF S g) ⟨0⟩, h, ?_⟩
let g' := (LightCondensed.yoneda S ((forget R).obj (F.obj ⟨0⟩))).symm g
let d : Cone F := by
refine F.nat_op_cone_mk ((lightProfiniteToLightCondSet ⋙ free R).obj
(limit (LightCondensed.preimage_diagram R c hF S g))) ?_ ?_
· exact fun n ↦ (lightProfiniteToLightCondSet ⋙ free R).map
(limit.π _ ⟨n⟩) ≫ (freeYoneda R _ _).symm (preimage R c hF S g n).2
· intro n
rw [← limit.w (LightCondensed.preimage_diagram R c hF S g) (homOfLE n.le_succ).op]
simp only [Functor.comp_obj, Functor.comp_map, Nat.succ_eq_add_one, Category.assoc,
Functor.map_comp]
congr 1
erw [freeYoneda_symm_naturality, freeYoneda_symm_conaturality]
congr 1
erw [preimage_w R c hF S g n]
simp only [preimage_diagram, Nat.functor_mk_obj, Nat.functor_mk_map_step]
let x : lightProfiniteToLightCondSet.obj (limit (preimage_diagram R c hF S g)) ⟶
(forget R).obj c.pt := by
let d : Cone F := by
refine F.nat_op_cone_mk ((lightProfiniteToLightCondSet ⋙ free R).obj
(limit (LightCondensed.preimage_diagram R c hF S g))) ?_ ?_
· exact fun n ↦ (lightProfiniteToLightCondSet ⋙ free R).map
(limit.π _ ⟨n⟩) ≫ (freeYoneda R _ _).symm (preimage R c hF S g n).2
· intro n
rw [← limit.w (LightCondensed.preimage_diagram R c hF S g) (homOfLE n.le_succ).op]
simp only [Functor.comp_obj, Functor.comp_map, Nat.succ_eq_add_one, Category.assoc,
Functor.map_comp]
congr 1
erw [freeYoneda_symm_naturality, freeYoneda_symm_conaturality]
congr 1
erw [preimage_w R c hF S g n]
simp only [preimage_diagram, Nat.functor_mk_obj, Nat.functor_mk_map_step]
exact (freeForgetAdjunction R).homEquiv _ _ (hc.lift d)
refine ⟨LightCondensed.yoneda _ _ x, ?_⟩
simp only [Functor.const_obj_obj, yoneda_apply]
erw [yonedaEquiv_apply]
sorry
change ((forget R).map _).val.app _ _ = _
erw [yoneda_conaturality]
simp only [x]
simp only [Functor.const_obj_obj, Adjunction.homEquiv_unit, Functor.id_obj, Functor.comp_obj,
Category.assoc]
rw [← (forget R).map_comp, hc.fac]
simp only [Functor.comp_obj, Functor.comp_map, freeYoneda, Equiv.symm_trans_apply,
Nat.succ_eq_add_one, id_eq, eq_mpr_eq_cast, Functor.nat_op_cone_mk_pt, Functor.nat_op_cone_mk_π,
Adjunction.homEquiv_counit, Functor.id_obj, natTrans_nat_op_mk_app, Functor.map_comp,
Adjunction.unit_naturality_assoc, Adjunction.right_triangle_components, Category.comp_id, d]
erw [yoneda_symm_naturality, Equiv.apply_symm_apply]
rfl
3 changes: 3 additions & 0 deletions LeanCondensed/LightCondensed/Yoneda.lean
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,9 @@ lemma yoneda_symm_conaturality (S : LightProfinite) {A A' : LightCondSet} (f : A
ext T y
exact NatTrans.naturality_apply (φ := f.val) (Y := T) _ _

lemma yoneda_conaturality (S : LightProfinite) {A A' : LightCondSet} (f : A ⟶ A')
(g : S.toCondensed ⟶ A) : f.val.app ⟨S⟩ (yoneda S A g) = yoneda S A' (g ≫ f) := rfl

abbrev forgetYoneda (S : LightProfinite) (A : LightCondMod R) :
(S.toCondensed ⟶ (forget R).obj A) ≃ A.val.obj ⟨S⟩ := yoneda _ _

Expand Down

0 comments on commit bf18792

Please sign in to comment.